0  377023  377031  377037  377041  377047  377049  377053  377059  377061  377067  377073  377077  377079  377083  377089  377091  377097  377101  377103  377107  377109  377113  377115  377117  377118  377119  377121  377122  377123  377125  377127  377131  377133  377137  377139  377143  377149  377151  377157  377161  377163  377167  377173  377179  377181  377187  377191  377193  377199  377203  377209  377217  447090 

1.处理充分、必要条件问题时,首先要分清条件与结论,然后才能进行推理和判断.不仅要深刻理解充分、必要条件的概念,而且要熟知问题中所涉及到的知识点和有关概念.

试题详情

4.A:圆与直线相切,B:

分析:要判断A是B的什么条件,只要判断由A能否推出B和由B能否推出A即可.

解:(1) 当,取,则方程无实根;若方程有实根,则由推出6,由此可推出.所以A是B的必要非充分条件.

(2)若

所以成立

成立   取,知不一定成立,

故A是B的充分不必要条件.

(3) 由,由解得,所以A推不出B,但B可以推出A,故A是B的必要非充分条件.

(4) 直线与圆相切圆(0,0)到直线的距离,即.所以A是B的充要条件.

变式训练1:指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答). 

(1)在△ABC中,p:∠A=∠B,q:sinA=sinB; 

(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6; 

(3)非空集合A、B中,p:x∈A∪B,q:x∈B; 

(4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0. 

解: (1)在△ABC中,∠A=∠BsinA=sinB,反之,若sinA=sinB,因为A与B不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p是q的充要条件. 

(2)易知: p:x+y=8, q:x=2且y=6,显然qp.但pq,即q 是p 的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件. 

(3)显然x∈A∪B不一定有x∈B,但x∈B一定有x∈A∪B,所以p是q的必要不充分条件. 

(4)条件p:x=1且y=2,条件q:x=1或y=2, 

所以pq但qp,故p是q的充分不必要条件. 

例2. 已知p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有两个小于1的正根,试分析pq的什么条件.

解:若方程x2+mx+n=0有两个小于1的正根,设为x1x2

则0<x1<1、0<x2<1,∵x1+x2=-mx1x2n

∴0<-m<2,0<n<1  ∴-2<m<0,0<n<1

pq的必要条件.

又若-2<m<0,0<n<1,不妨设m=-1,n

则方程为x2x+=0,∵△=(-1)2-4×=-1<0. ∴方程无实根  ∴pq的非充分条件.

综上所述,pq的必要非充分条件.

变式训练2:证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0. 

证明:充分性:若ac<0,则b2-4ac>0,且<0, 

∴方程ax2+bx+c=0有两个相异实根,且两根异号,即方程有一正根和一负根.  

必要性:若一元二次方程ax2+bx+c=0有一正根和一负根,则=b2-4ac>0,x1x2=<0,∴ac<0.

综上所述,一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.

例3. 已知p: |1-|≤2,q::x2-2x+1-m2≤0(m>0),若的必要而不充分条件,求实数m的取值范围.

解: 由题意知:命题:若┒p是┑q的必要而不充分条件的等价命题即逆否命题为:pq的充分不必要条件.

p: |1-|≤2-2≤-1≤2-1≤≤3-2≤x≤10

q: x2-2x+1-m2≤0x-(1-m)][x-(1+m)]≤0*

pq的充分不必要条件,

∴不等式|1-|≤2的解集是x2-2x+1-m2≤0(m>0)解集的子集.

又∵m>0,∴不等式*的解集为1-mx≤1+m

,∴m≥9,

∴实数m的取值范围是[9,+∞

变式训练3:已知集合和集合,求a的一个取值范围,使它成为的一个必要不充分条件.

解:

   由

所以是必要但不充分条件. 说明:此题答案不唯一.

例4. “函数y=(a2+4a-5)x2-4(a-1)x+3的图象全在x轴的上方”,这个结论成立的充分必要条件是什么?

解:函数的图象全在轴上方,若是一次函数,则

若函数是二次函数,则:

反之若,由以上推导,函数的图象在轴上方,综上,充要条件是

变式训练4:已知P={x | |x-1| | >2},S={x | x2+的充要条件是,求实数的取值范围.

分析:的充要条件是,即任取,反过来,任取

据此可求得的值.

解:的充要条件是

∵P={x || x-1|>2}}=

S={x | x2+(a+1)x+a>0)}={x | (x+a)(x+1)>0}

归纳小结
 
 

试题详情

3.A:;B:

试题详情

2. A:,B:

试题详情

1. A:,B:方程有实根;

试题详情

3.充要条件:如果p叫做q     条件.

典型例题
 
 

例1.在下列各题中,判断A是B的什么条件,并说明理由.

试题详情

2.必要条件:如果p叫做q     条件,q叫做p     条件.

试题详情

1.充分条件:如果p叫做q     条件,q叫做p     条件.

试题详情

3.反证法的第一步为否定结论,需要掌握常用词语的否定(如“至少”等),而且推理过程中,一定要把否定的结论当条件用,从而推出矛盾.用反证法证明命题的一般步骤为:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从这个假设出发,经过正确的推理论证得出矛盾;(3)由矛盾判断假设不正确,从而肯定所证命题正确.

第2课时   充要条件

基础过关
 
 

试题详情

2.当一个命题直接证明出现困难时,通常采用间接证明法,反证法就是一种间接证法.

试题详情


同步练习册答案