(2009·全国卷Ⅱ)近期研制出利用玉米叶片加工、编织购物袋的技术,这种购物袋易分解且物美价廉。据此完成6-7题。
6.该种购物袋的生产厂应接近 ( )
A.原料产地 B.销售市场
C.能源基地 D.研发基地
解析:购物袋利用了玉米叶片加工,制成品重量、体积大大减小,因此生产厂应接近原料产地。
答案:A
7.以该种购物袋替代目前广泛使用的同类用品,对环境保护的直接作用是 ( )
A.减轻大气污染 B.减轻“白色污染”
C.促进生物多样性 D.减轻酸雨危害
解析:目前购物袋使用的原料是化工产品,易造成“白色污染”,使用易分解的生物原料产品,对环境保护的直接作用是减轻“白色污染”。
答案:B
2009年上海动漫娱乐展于7月3日至6日在上海展览中心隆重举行。动漫产业是个需要大量专业人才的产业。目前,动漫产业已经成为日本第三大产业。根据材料,回答4-5题。
4.根据材料中的信息判断,动漫产业属于 ( )
A.劳动力导向型 B.技术导向型
C.原料导向型 D.市场导向型
解析:根据题中的信息可知,动漫产业对技术的要求较高,属于技术导向型。
答案:B
5.日本是世界上的动漫产业大国,下列叙述正确的是 ( )
A.日本是个四面临海的岛国,有利于动漫产业的出口
B.日本的钢铁工业发达,为动漫产业的发展提供了坚实的物质基础
C.日本科技水平高,动漫设计人员多且素质高
D.日本的人口稠密,劳动力廉价,许多人员靠设计动漫维持生计
解析:日本是一个发达国家,对教育非常重视,因此科技水平较高,而动漫产业属技术导向型,适宜分布在科技水平高的地区。
答案:C
3.对于给出集合是否为空集,集合中的元素个数是否确定,都是常见的讨论点,解题时要有分类讨论的意识.
2.集合的运算可以用韦恩图帮助思考,实数集合的交、并运算可在数轴上表示,注意在运算中运用数形结合思想.
1.在解决有关集合运算题目时,关键是准确理解题目中符号语言的含义,善于转化为文字语言.
4.A∪B=A
A∩B=A
|
例1. 设全集,方程有实数根,方程
有实数根,求.
解:当时,,即;
当时,即,且 ∴,
∴
而对于,即,∴.
∴
变式训练1.已知集合A=B=
(1)当m=3时,求;
(2)若AB,求实数m的值.
解: 由得∴-1<x≤5,∴A=.
(1)当m=3时,B=,则=,
∴=.
(2)∵A=∴有42-2×4-m=0,解得m=8.
此时B=,符合题意,故实数m的值为8.
例2. 已知,或.
(1)若,求的取值范围;
(2) 若,求的取值范围.
解:(1), ∴,解之得.
(2) , ∴. ∴或, 或
∴若,则的取值范围是;若,则的取值范围是.
变式训练2:设集合A=B
(1)若AB求实数a的值;
(2)若AB=A,求实数a的取值范围;
(3)若U=R,A()=A.求实数a的取值范围.
解:由x2-3x+2=0得x=1或x=2,故集合A=
(1)∵AB∴2B,代入B中的方程,
得a2+4a+3=0,∴a=-1或a=-3;
当a=-1时,B=满足条件;
当a=-3时,B=满足条件;
综上,a的值为-1或-3.
(2)对于集合B,
=4(a+1)2-4(a2-5)=8(a+3).
∵AB=A,∴BA,
①当<0,即a<-3时,B=,满足条件;
②当=0,即a=-3时,B,满足条件;
③当>0,即a>-3时,B=A=才能满足条件,
则由根与系数的关系得
即矛盾;
综上,a的取值范围是a≤-3.
(3)∵A()=A,∴A,∴A
①若B=,则<0适合;
②若B≠,则a=-3时,B=,AB=,不合题意;
a>-3,此时需1B且2B,将2代入B的方程得a=-1或a=-3(舍去);
将1代入B的方程得a2+2a-2=0
∴a≠-1且a≠-3且a≠-1
综上,a的取值范围是a<-3或-3<a<-1-或-1-<a<-1或-1<a<-1+或a>-1+.
例3. 已知集合A=B,试问是否存在实数a,使得AB 若存在,求出a的值;若不存在,请说明理由.
解:方法一 假设存在实数a满足条件AB=则有
(1)当A≠时,由AB=,B,知集合A中的元素为非正数,
设方程x2+(2+a)x+1=0的两根为x1,x2,则由根与系数的关系,得
(2)当A=时,则有=(2+a)2-4<0,解得-4<a<0.
综上(1)、(2),知存在满足条件AB=的实数a,其取值范围是(-4,+∞).
方法二 假设存在实数a满足条件AB≠,则方程x2+(2+a)x+1=0的两实数根x1,x2至少有一个为正,
因为x1·x2=1>0,所以两根x1,x2均为正数.
则由根与系数的关系,得解得
又∵集合的补集为
∴存在满足条件AB=的实数a,其取值范围是(-4,+∞).
变式训练3.设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠?若存在,请求出a的值;若不存在,说明理由.
解:假设A∩B≠,则方程组
有正整数解,消去y,得ax2-(a+2)x+a+1=0.
由Δ≥0,有(a+2)2-4a(a+1)≥0,解得-.因a为非零整数,∴a=±1,
当a=-1时,代入(*), 解得x=0或x=-1,
而x∈N*.故a≠-1.当a=1时,代入(*),
解得x=1或x=2,符合题意.故存在a=1,使得A∩B≠,
此时A∩B={(1,1),(2,3)}.
|
解:1<a<2即实数(1,2)时,=.
变式训练4.设集合为函数的定义域,集合为函数的值域,集合为不等式的解集.(1)求;(2)若,求的取值范围.
解:(1)解得A=(-4,2), B= 。 所以
|
3. ,
,
2.= ,= , .
1.A∩A= ,A∩= ,A∩B= ,B∩A,A∪A= ,
A∪= ,A∪B=B∪A
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com