2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。
51. 已知空间四边形ABCD中,AB=BC=CD=DA=DB=AC,M、N分别为BC、AD的中点。 求:AM与CN所成的角的余弦值; 解析:(1)连接DM,过N作NE∥AM交DM于E,则∠CNE 为AM与CN所成的角。 ∵N为AD的中点, NE∥AM省 ∴NE=AM且E为MD的中点。 设正四面体的棱长为1, 则NC=·= 且ME=MD= 在Rt△MEC中,CE2=ME2+CM2=+=
∴cos∠CNE=, 又∵∠CNE ∈(0, ) ∴异面直线AM与CN所成角的余弦值为.
注:1、本题的平移点是N,按定义作出了异面直线中一条的平行线,然后先在△CEN外计算CE、CN、EN长,再回到△CEN中求角。
50. 点A是BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,且EF= AD,求异面直线AD和BC所成的角。(如图)
解析:设G是AC中点,连接DG、FG。因D、F分别是AB、CD中点,故EG∥BC且EG= BC,FG∥AD,且FG=AD,由异面直线所成角定义可知EG与FG所成锐角或直角为异面直线AD、BC所成角,即∠EGF为所求。由BC=AD知EG=GF=AD,又EF=AD,由余弦定理可得cos∠EGF=0,即∠EGF=90°。
注:本题的平移点是AC中点G,按定义过G分别作出了两条异面直线的平行线,然后在△EFG中求角。通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系。
49. 设空间四边形ABCD,E、F、G、H分别是AC、BC、DB、DA的中点,若AB=12,CD=4 ,且四边形EFGH的面积为12 ,求AB和CD所成的角.
解析: 由三角形中位线的性质知,HG∥AB,HE∥CD,∴ ∠EHG就是异面直线AB和CD所成的角.
∵ EFGH是平行四边形,HG= AB=6,
HE= ,CD=2,
∴ SEFGH=HG·HE·sin∠EHG=12 sin∠EHG,∴ 12 sin∠EHG=12.
∴ sin∠EHG=,故∠EHG=45°.
∴ AB和CD所成的角为45°
注:本例两异面直线所成角在图中已给,只需指出即可。
48.经过平面外两点A,B和平面垂直的平面有几个?
解析:一个或无数多个。
当A,B不垂直于平面时,只有一个。
当A,B垂直于平面时,有无数多个。
47. 画出满足下列条件的图形。
(1)α∩β=1,a α,b β,a∩b=A
(2)α∩β=a,b β,b∥a
解析:如图1-8-甲,1-8-乙
46. 三条平行直线可以确定平面_________个。答案:1个或3个
解析:分类、一类三线共面,即确定一个平面,另一类三线不共面,每两条确定一个,可确定3个。
45. 三角形、四边形、正六边形、圆,其中一定是平面图形的有________3个。
解析:三角形的三个顶点不在一条直线上,故可确定一个平面,三角形在这个平面内;圆上任取三点一定不在一条直线上,这三点即确定一个平面,也确定了这个圆所在的平面,所以圆是平面图形;而正六边形内接于圆,故正六边形也是平面图形;而四边形就不一定是平面图形了,它的四个顶点可以不在同一平面内。
44. 空间一条直线及不在这条直线上的两个点,如果连结这两点的直线与已知直线_______,则它们在同一平面内。答案:相交或平行
解析:根据推论2,推论3确定平面的条件。
43. 如果一条直线上有一个点不在平面上,则这条直线与这个平面的公共点最多有____1个。
解析:如果有两个,则直线就在平面内,那么直线上的所有点都在这个平面内,这就与已知有一个点不在平面上矛盾,所以这条直线与这个平面的公共点最多有一个。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com