5.已知下列四个命题:
① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;
③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直;
④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直;
其中真命题的序号是
A.①② B.②③ C.②④ D.③④
4.到定点其中的距离等于到定直线的距离的轨迹方程为
A. B. C. D.
3.若且,则向量与的夹角为
A. B. C. D.
2.已知为虚数单位,则复数等于
A. B. C. D.
1.设全集,,,则
A. B. C. D.
15(本题满分12分)已知函数. 21世纪教育网
求:(1)的值; (2)的表达式
16(本题满分14分)已知 且;
集合且.
若∨为真命题,∧为假命题,求实数的取值范围。21世纪教育网
17(本题满分14分)如图,在三棱锥中,底面是边长为4的正三角形,侧面底面,,分别为的中点.
(Ⅰ)求证:;(Ⅱ)求二面角的大小的余弦值.
18(本题满分12分)某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。
(Ⅰ)试写出关于的函数关系式;
(Ⅱ)当=640米时,需新建多少个桥墩才能使最小?
19(本题满分14分)已知椭圆它的左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标。
20(本题满分分)已知数列满足:.
(1)求数列的通项公式;21世纪教育网
(2)证明:;
(3)设,且,证明:.
14.函数对于任意实数满足条件,若,
则= 21世纪教育网
13.如图1,已知抛物线的焦点恰好是椭圆
的右焦点F,且两条曲线的交点连线也过焦点,
则该椭圆的离心率为 .21世纪教育网
12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
11、设,若是的充分不必要条件,则实数的
取值范围是 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com