0  380216  380224  380230  380234  380240  380242  380246  380252  380254  380260  380266  380270  380272  380276  380282  380284  380290  380294  380296  380300  380302  380306  380308  380310  380311  380312  380314  380315  380316  380318  380320  380324  380326  380330  380332  380336  380342  380344  380350  380354  380356  380360  380366  380372  380374  380380  380384  380386  380392  380396  380402  380410  447090 

2、两相互正交的平面镜构成反射器,任何方向射入某一镜面的光线经两次反射后一定与原入射方向平行反向。

试题详情

1、光学:美国迈克耳逊用旋转棱镜法较准确的测出了光速,

反射定律(物像关于镜面对称);由偏折程度直接判断各色光的n

折射定律

光学中的一个现象一串结论

色散现象
n
v
λ(波动性)
衍射
C
干涉间距
γ (粒子性)
E光子
光电效应




 


 

大  (明显)
 
小 (不明显)
容易
 


 


 

小 (不明显)
 
大 (明显)

 


 

结论:(1)折射率n、;

(2)全反射的临界角C;

(3)同一介质中的传播速率v;

(4)在平行玻璃块的侧移△x

(5)光的频率γ,频率大,粒子性明显.;

(6)光子的能量E=hγ则光子的能量越大。越容易产生光电效应现象

    (7)在真空中光的波长λ,波长大波动性显著;

(8)在相同的情况下,双缝干涉条纹间距x越来越窄

(9)在相同的情况下,衍射现象越来越不明显

全反射的条件:光密到光疏;入射角等于或大于临界角

全反射现象:让一束光沿半圆形玻璃砖的半径射到直边上,可以看到一部分光线从玻璃直边上折射到空气中,一部分光线反射回玻璃砖内.逐渐增大光的入射角,将会看到折射光线远离法线,且越来越弱.反射光越来越强,当入射角增大到某一角度C时,折射角达到900,即是折射光线完全消失,只剩下反射回玻璃中的光线.这种现象叫全反射现象.折射角变为900时的入射角叫临界角

应用:光纤通信(玻璃sio2) 内窥镜 海市蜃楼 沙膜蜃景 炎热夏天柏油路面上的蜃景

水中或玻璃中的气泡看起来很亮. 

理解:同种材料对不同色光折射率不同;同一色光在不同介质中折射率不同。

几个结论:1紧靠点光源向对面墙平抛的物体,在对面墙上的影子的运动是匀速运动。

试题详情

6.电磁感应与电路综合

方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:

(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.

(2)画出等效电路图.

(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.

功能关系:电磁感应现象的实质是不同形式能量的转化过程。因此从功和能的观点入手,

分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。

交变电流  电磁场

交变电流(1)中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。

中性面的特点:a.线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但=0;

产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。

变化规律e=NBSωsinωt=Emsinωt;i=Imsinωt;(中性面位置开始计时),最大值Em=NBSω

四值:①瞬时值②最大值③有效值电流的热效应规定的;对于正弦式交流U==0.707Um ④平均值

不对称方波:   不对称的正弦波

求某段时间内通过导线横截面的电荷量Q=IΔt=εΔt/R=ΔΦ/R

我国用的交变电流,周期是0.02s,频率是50Hz,电流方向每秒改变100次。

表达式:e=e=220sin100πt=311sin100πt=311sin314t

线圈作用是“通直流,阻交流;通低频,阻高频”.

电容的作用是“通交流、隔直流;通高频、阻低频”.

变压器两个基本公式:①   ②P=P输入功率由输出功率决定

远距离输电:一定要画出远距离输电的示意图来,

包括发电机、两台变压器、输电线等效电阻和负载电阻。并按照规范在图中标出相应的物理量符号。一般设两个变压器的初、次级线圈的匝数分别为、n1n1/ n2n2/,相应的电压、电流、功率也应该采用相应的符号来表示。

功率之间的关系是:P1=P1/P2=P2/P1/=Pr=P2

电压之间的关系是:

电流之间的关系是:.求输电线上的电流往往是这类问题的突破口

输电线上的功率损失和电压损失也是需要特别注意的。

分析和计算时都必须用,而不能用

特别重要的是要会分析输电线上的功率损失

解决变压器问题的常用方法(解题思路)

①电压思路.变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=……

②功率思路.理想变压器的输入、输出功率为P=P,即P1=P2;当变压器有多个副绕组时P1=P2+P3+……

③电流思路.由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+……

④(变压器动态问题)制约思路.

(1)电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”.

(2)电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”.

(3)负载制约:①变压器副线圈中的功率P2由用户负载决定,P2=P1+P2+…;

②变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2

③总功率P=P线+P2.

动态分析问题的思路程序可表示为:

U1P1

⑤原理思路.变压器原线圈中磁通量发生变化,铁芯中ΔΦt相等;当遇到“”型变压器时有

ΔΦ1tΦ2tΦ3t,适用于交流电或电压(电流)变化的直流电,但不适用于恒定电流

试题详情

5.电磁感应与动量、能量的综合

方法:(1)从动量角度着手,运用动量定理或动量守恒定律

①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.

②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.

(2)从能量转化和守恒着手,运用动能定律或能量守恒定律

①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.

②能量转化特点:其它能(如:机械能)电能内能(焦耳热)

试题详情

4.电磁感应与力学综合

方法:从运动和力的关系着手,运用牛顿第二定律

(1)基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二列方程求解.

(2)注意安培力的特点:

(3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.

试题详情

3.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,这就是楞次定律。

内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

B和I的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I的B是阻碍产生I的原因)

B方向?;B?变化(原方向是增还是减);I方向?才能阻碍变化;再由I方向确定B方向。

楞次定律的多种表述

①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。

③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。(增反、减同)

④楞次定律的特例──右手定则

在应用中常见两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。

磁通量的变化与相对运动具有等效性:磁通量增加相当于导体回路与磁场接近,磁通量减少相当于导体回路与磁场远离。因此,

从导体回路和磁场相对运动的角度来看,感应电流的磁场总要阻碍相对运动;

从穿过导体回路的磁通量变化的角度来看,感应电流的磁场总要阻碍磁通量的变化。

能量守恒表述:I效果总要反抗产生感应电流的原因

电磁感应现象中的动态分析,就是分析导体的受力和运动情况之间的动态关系。

一般可归纳为:

导体组成的闭合电路中磁通量发生变化导体中产生感应电流导体受安培力作用

导体所受合力随之变化导体的加速度变化其速度随之变化感应电流也随之变化

周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动

“阻碍”和“变化”的含义

感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。

磁通量变化           感应电流

感应电流的磁场

发生电磁感应现象的这部分电路就相当于电源,在电源的内部,电流的方向是从低电势流向高电势。

试题详情

2.[感应电动势的大小计算公式] 1) E=BLV                       (垂直平动切割)  

2) …=?(普适公式) ε∝(法拉第电磁感应定律) 3) E= nBSωsin(ωt+Φ);Em=nBSω         (线圈转动切割) 4)E=BL2ω/2                     (直导体绕一端转动切割)      5)*自感E=nΔΦ/Δt==L           ( 自感 )

试题详情

1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。

内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

试题详情

4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件

a、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。

b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。

注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。

电磁感应:.

试题详情

3、求粒子的运动时间:偏向角(圆心角、回旋角)=2倍的弦切角,即=2

  ×T

试题详情


同步练习册答案