5、实际上,用导数求解或判断一般函数单调性是很便捷的方法,定义法是基本方法,常用来判定抽象函数或不易求导的函数的单调性。
4、判断函数单调性的方法:
①定义法,即比较法;②图象法;③复合函数单调性判断法则;④导数;
3、复合函数单调性:设y=f(u),u=g(x),x∈[a,b],u∈[m,n]都是单调函数,则y=f[g(x)]在[a,b]上也是单调函数--同增异减,即
(1)若y=f(u)是[m,n]上的增函数,则y=f[g(x)]与u=g(x)的增减性相同;
(2)若y=f(u)是[m,n]上的减函数,则y=f[g(x)]的增减性与u=g(x)的增减性相反.
2、函数单调性指的是某个区间上的性质,是定义域中的一部分;要说函数是增函数则必须在整个定义域内递增;函数在每个区间上递增也未必是增函数,如正切函数,y= -1/x等;
1、函数单调性定义:如果对于任意的 x1、x2∈(a,b),当x1<x2时,都有f(x1)<f(x2)(或f(x1)>f(x2)),那么就说f(x)在这个区间(a,b)上是增函数(或减函数),(a,b)叫这个函数的单调递增(或递减)区间,说f(x)在这一区间上具有(严格的)单调性。
4、会判定或求复合函数的单调区间。
3、会用函数单调性比较大小、求值域或最值;
2、掌握函数的单调性的判断和证明的方法;
1、理解函数单调性的概念;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com