68、(湖北省三校联合体高2008届2月测试)已知数列的首项,前项和为,且、、分别是直线上的点A、B、C的横坐标,点B分所成的比为,设
。
⑴ 判断数列是否为等比数列,并证明你的结论;
⑵ 设,证明:。
⑴由题意得……………3分
数列是以为首项,以2为公比的等比数列。………………6分
[则()]
⑵由及得
,……………………………………………………………8分
则……………………10分
………………12分
67、(湖北省八校高2008第二次联考)已知数列,满足,数列的前项和为.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:;
(Ⅲ)求证:当时,.
解:(1)由,得,代入,得,
整理,得,从而有,,
是首项为1,公差为1的等差数列,即. …………………(4分)
(2), ,
,
,
. …………………(8分)
(3),.
由(2)知,,
.
…………………(14分)
66、(黑龙江省哈师大附中2008届高三上期末)已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2且n∈N*)
(1)求出所有使数列值,并说明理由;
(2)求数列的通项公式;
(3)求证:
解:(1)
(2)
(3)当时,
65、(黑龙江省哈师大附中2008届高三上期末)已知二次函数f(x)=ax2+bx+c的图象顶点坐标是(,-),且f(3)=2
(1)求y=f(x)的表达式,并求出f(1),f(2)的值;
(2)数列,若对任意的实数,其中是定义在实数集R上的一个函数,求数列的通项公式;
(3)设圆是各项都是正数的等比数列,设个圆的面积之和,求
解:(1)
(2)令
(3)
64、(黑龙江省哈师大附中2008届高三上期末)已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1).
(1)求数列;
(2)设
解:(1)
(2)
63、(本题满分12分)(黑龙江省哈尔滨三中2008年高三上期末)已知,数列
(1)证明:
(2)证明:
(3)设的前n项和,判断的大小,并说明理由。
答案:(1)略
(2)略
(3)
62、(黑龙江省哈尔滨三中2008年高三上期末)已知二次函数的图象过点(-4n,0)且
(1)求的解析式;
(2)若数列的通项公式;
(3)对于(2)中的数列
答案:(1)
(2)
(3)略
61、(黑龙江省哈尔滨九中2008年第三次模拟考试)已知数列的前n项和为,点在曲线上且.
(1)求数列的通项公式;
(2)数列的前n项和为且满足,设定的值使得数列是等差数列;
(3)求证:.
解:(1)
∴
∴
∴数列是等差数列,首项公差d=4
∴
∴
∵
∴…………(4分)
(2)由
得
∴
∴
∴
若为等差数列,则
∴
(3)
∴
∴
……………………12分
60、已知数列中,其前n项和为 满足.
(1)试求数列的通项公式.
(2)令是数列的前n项和,证明:.
(3)证明:对任意的,均存在,使得(2)中的成立.
解:(1)由得
,,即
又,
故数列的通项公式为.……………………(4分)
(2)
……………………(8分)
(3)证明:由(2)可知
若,则得,化简得
,
当,即………………(10分)
当,即
,取即可,
综上可知,对任意的均存在使得时(2)中的成立(12分)
59、(河南省开封市2008届高三年级第一次质量检)函数对任意x∈R都有f(x)+f(1-x)=.
(1)求的值;
(2)数列的通项公式。
(3)令试比较Tn与Sn的大小。
解:(1)令
令
(2)
又,两式相加
是等差数列
(3)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com