3.热力学三大定律: 第一、第二类永动机是怎样的机器?
热力学第一定律:ΔE=W+Q能的转化守恒定律第一类永动机不可能制成.
符号法则: 体积增大,气体对外做功,W为“一”;体积减小,外界对气体做功,W为“+”。
气体从外界吸热,Q为“+”;气体对外界放热,Q为“一”。
温度升高,内能增量DE是取“+”;温度降低,内能减少,DE取“一”。
三种特殊情况: (1) 等温变化DE=0,即 W+Q=0 (2) 绝热膨胀或压缩:Q=0即 W=DE
(3)等容变化:W=0 ,Q=DE
热学第二定律(1)第二类永动机不可能制成
实质:涉及热现象(自然界中)的宏观过程都具有方向性,是不可逆的
(2)热传递方向表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导有方向性) (3)机械能与内能转化表述:
不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化具有方向性)。
热力学第三定律:热力学零度不可达到。T=t+273.15
气体压强:宏观 微观:分子频繁撞击
一定质量的理想气体状态方程:
公式:=恒量 或
2.物体的内能:决定于物质的量、T 、v(对于理想气体,认为没有势能,其内能只与温度有关)
一切物体都有内能(由微观分子动能和势能决定而机械能由宏观运动快慢和位置决定)、
有惯性、有固有频率、都能辐射红外线、都能对光发生衍射现象、对金属都具有极限频率、对任何运动物体都有波长与之对应(德布罗意波长)
内能的改变方式:做功(转化)外对其做功;热传递(转移)吸收热量 注意(符合法则)
热量只能自发地从高温到低温物体,低到高也可以,但要引起其它变化(热的第二定律)
1.分子动理论:
①物质由大量分子组成,(直径数量级,直径数量级10-10m 埃A 10-9m纳米nm,单分子油膜法V/S)
NA是联系宏观世界和微观世界的桥梁
②分子永不停息做无规则的热运动 (扩散、布朗运动是固体小颗粒的无规则运动,它能反映出液体分子的运动)
③分子间存在相互作用力,
(注意:引力和斥力同时存在,都随距离的增大而减小,但斥力变化得快。分子力是指引力和斥力的合力。)
热点:由r的变化讨论分子力、分子动能、分子势能的变化
4、 热学
3、机械振动、机械波:
基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全振动过程中各物理量的变化规律。
简谐振动: 回复力: F = 一KX 加速度:a =一KX/m
单摆:T= 2(与摆球质量,振幅无关) *弹簧振子T= 2(与振子质量有关,与振幅无关)
等效摆长、等效的重力加速度 影响重力加速度有:
①纬度,离地面高度
②在不同星球上不同,与万有引力圆周运动规律(或其它运动规律)结合考查
③系统的状态(超、失重情况)
④所处的物理环境有关,有电磁场时的情况
⑤静止于平衡位置时等于摆线张力与球质量的比值
注意等效单摆(即是受力环境与单摆的情况相同)
T=2 g= 应用:T1=2
沿光滑弦cda下滑时间t1=toa=
沿cde圆弧下滑t2或弧中点下滑t3:
共振的现象、条件、防止和应用
机械波:基本概念,形成条件、
特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,
④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长
波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离
②一个周期内波传播的距离 ③两相邻的波峰(或谷)间的距离
④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长
波从一种介质传播到另一种介质,频率不改变, 波长、波速、频率的关系: V=lf =(适用于一切波)
波速与振动速度的区别 波动与振动的区别:
研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现,
图象特点和意义 联系:
波的传播方向质点的振动方向(同侧法、带动法、上下波法、平移法)
知波速和波形画经过(t)后的波形(特殊点画法和去整留零法)
波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件
电磁波:LC振荡电路:产生高频率的交变电流. T=2π
电场能↑→电场线密度↑→电场强度E↑→ 电容器极板间电压u↑→ 电容器带电量q↑
磁场能↑→磁感线密度↑→磁感强度B↑→线圈中电流i↑
(2)电磁振荡的产生过程
放电过程:在放电过程中,q↓、u↓、E电场能↓→i↑、B↑、E磁场能↑,电容器的电场能逐渐转变成线圈的磁场能。放电结束时,q=0, E电场能=0,i最大,E磁场能最大,电场能完全转化成磁场能。
充电过程:在充电过程中,q↑、u↑、E电场能↑→I↓、B↓、E磁场能↓,线圈的磁场能向电容器的电场能转化。充电结束时,q、E电场能增为最大,i、E磁场能均减小到零,磁场能向电场能转化结束。
反向放电过程: q↓、u↓、E电场能↓→i↑、B↑、E磁场能↑,电容器的电场能转化为线圈的磁场能。放电结束时,q=0, E电场能=0,i最大,E磁场能最大,电场能向磁场能转化结束。
反向充电过程: q↑、u↑、E电场能↑→i↓、B↓、E磁场能↓,线圈的磁场能向电容器的电场能转化。充电结束时,q、E电场能增为最大,i、E磁场能均减小到零,磁场能向电场能转化结束。
麦克斯韦的电磁场理论:
①变化的磁场产生电场:均匀变化的磁场将产生恒定的电场,周期性变化的磁场将产生同频率周期性变化的电场。
②变化的电场产生磁场:均匀变化的电场将产生恒定的磁场,周期性变化的电场将产生同频率周期性变化的磁场。
发射电磁波的条件①频率要有足够高。②振荡电路的电场和磁场必须分散到尽可能大的空间,采用开放电路.
特点:(1)电磁波是横波。(2)三个特征量的关系v=λ/T=λf
(3)电磁波可以在真空中传播,向周围空间传播电磁能,能发生反射,折射,干涉和衍射。
无线电波的发射:LC振荡器电路产生的高频振荡电流通过L2与L1的互感作用,使L1也产生同频率的振荡电流,振荡电流在开放电路中激发出无线电波,向四周发射。
调制要传递的信号附加到高频等幅振荡电流上的过程叫调制。两种方式:调幅和调频
a.调幅使高频振荡的振幅随信号而改变叫做调幅。(AM) 中波和短波的波段
b.调频使高频振荡的频率随信号而改变叫做调频。(FM)和电视广播,微波中的甚高频(VHF)和超高频(UHF)波段。
电波的接收(1)电谐振选台。当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强.这种现象叫做电谐振,相当于机械振动中的共振。
(2)检波由调谐电路接收到的感应电流,是经过调制的高频振荡电流,还不是所需要的信号。还必须从高频振荡电流中“检”出声音或图象信号,从接收到的高频振荡中“检”出所携带的信号,叫做检波。也叫解调。
下图中L2、D、C2和耳机共同组成检波电路。检波之后的信号再经过放大重现我们就可以听到或看到了。
(如上图)
3.放射性同位素的应用
⑴利用其射线:α射线电离性强,用于使空气电离,将静电泄出,从而消除有害静电。γ射线贯穿性强,可用于金属探伤,也可用于治疗恶性肿瘤。各种射线均可使DNA发生突变,可用于生物工程,基因工程。
⑵作为示踪原子。用于研究农作物化肥需求情况,诊断甲状腺疾病的类型,研究生物大分子结构及其功能。
⑶进行考古研究。利用放射性同位素碳14,判定出土木质文物的产生年代。
一般都使用人工制造的放射性同位素(种类齐全,各种元素都有人工制造的放射性同位。半衰期短,废料容易处理。可制成各种形状,强度容易控制)。
重要的物理现象或史实跟相应的科学家
单摆的等时性
伽利略 |
单摆的周期公式 惠更斯 |
电流的磁效应
奥斯特 |
电磁感应定律
法拉第 |
首先用电场线描述电场 法拉第 |
电子电量的测定
密立根 |
分子电流假说
安培 |
预言了电磁波的存在 麦克斯韦 |
建立了电磁场理论 麦克斯韦 |
用实验证实了电磁波的存在 赫兹 |
光的微粒说
牛顿 |
光的波动说
惠更斯 |
光的电磁说
麦克斯韦 |
光的干涉现象
杨氏 |
电子的发现
汤姆生 |
中子的发现
查德威克 |
质子的发现
卢瑟福 |
人工放射性同位素发现 小居里夫妇 |
a粒子散射实验
卢瑟福 |
圆满解释氢光谱 玻尔 |
原子的核式结构模型 卢瑟福 |
天然放射性的发现 贝克勒耳 |
光电效应规律光子说 爱因斯坦 |
质能方程 爱因斯坦 |
相对论
爱因斯坦 |
|
2.半衰期
放射性元素的原子核有半数发生衰变所需的时间叫半衰期。(对大量原子核的统计规律)计算式为:N表示核的个数 ,此式也可以演变成 或,式中m表示放射性物质的质量,n 表示单位时间内放出的射线粒子数。以上各式左边的量都表示时间t后的剩余量。
半衰期(由核内部本身的因素决定,与物理和化学状态无关)、 同位素等重要概念 放射性标志
2.各种放射线的性质比较
种 类 |
本 质 |
质量(u) |
电荷(e) |
速度(c) |
电离性 |
贯穿性 |
α射线 |
氦核 |
4 |
+2 |
0.1 |
最强 |
最弱,纸能挡住 |
β射线 |
电子 |
1/1840 |
-1 |
0.99 |
较强 |
较强,穿几mm铝板 |
γ射线 |
光子 |
0 |
0 |
1 |
最弱 |
最强,穿几cm铅版 |
三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:
四种核反应类型(衰变,人工核转变,重核裂变,轻核骤变)
⑴衰变: α衰变:(实质:核内)α衰变形成外切(同方向旋),
β衰变:(实质:核内的中子转变成了质子和中子)β衰变形成内切(相反方向旋),且大圆为α、β粒子径迹。
+β衰变:(核内)
γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。
⑵人工转变:
(发现质子的核反应)(卢瑟福)用α粒子轰击氮核,并预言中子的存在
(发现中子的核反应)(查德威克)钋产生的α射线轰击铍
(人工制造放射性同位素)
正电子的发现(约里奥居里和伊丽芙居里夫妇)α粒子轰击铝箔
⑶重核的裂变:
在一定条件下(超过临界体积),裂变反应会连续不断地进行下去,这就是链式反应。
⑷轻核的聚变:(需要几百万度高温,所以又叫热核反应)
所有核反应的反应前后都遵守:质量数守恒、电荷数守恒。(注意:质量并不守恒。)
1.天然放射现象的发现,使人们认识到原子核也有复杂结构。
核变化从贝克勒耳发现天然放射现象开始衰变(用电磁场研究):
3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设
定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量. 。(本假设是针对原子稳定性提出的)
跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)
(本假设针对线状谱提出)
能量和轨道量子化----定态不连续,能量和轨道也不连续;(即原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道分布也是不连续的)
(针对原子核式模型提出,是能级假设的补充)
光子的发射与吸收(特别注意跃迁条件):原子发生定态跃迁时,要辐射(吸收)一定频率的光子:hf=E初-E末
①轨道量子化rn=n2r1 r1=0.53×10-10m ②能量量子化: E1=-13.6eV
③原子在两个能级间跃迁时辐射或吸收光子的能量hν=Em-En
⑵从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。(如在基态,可以吸收E ≥13.6eV的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。
⑶玻尔理论的局限性。由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:En=E1/n2,rn=n2r1,
其中E1=-13.6eV, r1=5.3×10-10m,
(大量)处于n激发态原子跃迁到基态时的所有辐射方式共有=n (n-1)/2种
E51=13.06 E41=12.75 E31=12.09 E21=10.2; (有规律可依)
E52=2.86 E42=2.55 E32=1.89; E53=0.97 E43=0.66; E54=0.31
氢原子在n能级的动能、势能,总能量的关系是:EP=-2EK,E=EK+EP=-EK。(类似于卫星模型)
由高能级到低能级时,动能增加,势能降低,且势能的降低量是动能增加量的2倍,故总能量(负值)降低。
量子数
天然放射现象
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com