14.设进入健身中心的每一位健身者选择甲种健身项目的概率是,选择乙种健身项目的概率是
,且选择甲种与选择乙种健身项目相互独立,各位健身者之间选择健身项目是相互独立的。
(Ⅰ)求进入该健身中心的1位健身者选择甲、乙两种项目中的一项的概率;
(Ⅱ)求进入该健身中心的4位健身者中,至少有2位既未选择甲种又未选择乙种健身项目的概率。
解:(Ⅰ)记A表示事件:进入该健身中心的1位健身者选择的是甲种项目,B表示事件:进入该健身中心的1位健身者选择的是乙种项目,则事件A与事件B相互独立,P(A)=,P(B)=
。
故进入该健身中心的1位健身者选择甲、乙两种项目中的一项的概率为:P=
=P(A)
+
=
。
(Ⅱ)记C表示事件:进入该健身中心的1位健身者既未选择甲种又未选择乙种健身项目,D表示事件:进入该健身中心的4位健身者中,至少有2位既未选择甲种又未选择乙种健身项目,A2表示事件:进入该健身中心的4位健身者中恰有2位既未选择甲种又未选择乙种健身项目,A3表示事件:进入该健身中心的4位健身者中恰有3位既未选择甲种又未选择乙种健身项目,A4表示事件:进入该健身中心的4位健身者中恰有4位既未选择甲种又未选择乙种健身项目,则P(C)=,
,
,
。
13.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、
、
、
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
解:(Ⅰ)记“该选手能正确回答第轮的问题”的事件为
,则
,
,
,
该选手进入第四轮才被淘汰的概率
.
(Ⅱ)该选手至多进入第三轮考核的概率
.
12.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为,
,移栽后成活的概率分别为
,
.
(1)求甲、乙两种果树至少有一种果树成苗的概率;
(2)求恰好有一种果树能培育成苗且移栽成活的概率.
解:分别记甲、乙两种果树成苗为事件,
;分别记甲、乙两种果树苗移栽成活为事件
,
,
,
,
,
.
(1)甲、乙两种果树至少有一种成苗的概率为
;
(2)分别记两种果树培育成苗且移栽成活为事件,则
,
.恰好有一种果树培育成苗且移栽成活的概率为
.
11.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%. 假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件
,由题设知,事件
与
相互独立,且
,
.
(I)任选1名下岗人员,该人没有参加过培训的概率是
所以该人参加过培训的概率是.
(II)任选3名下岗人员,3人中只有2人参加过培训的概率是.
3人都参加过培训的概率是.所以3人中至少有2人参加过培训的概率是
.
10.在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是
.
9.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为 .
8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率为 .
7.二项式的展开式的各项系数和大于32小于128,则展开式中系数最大的项是 . 20
6.已知,则(
的值等于
-256
5.一袋中装有大小相同,编号分别为的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( D )
A. B.
C.
D.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com