0  382723  382731  382737  382741  382747  382749  382753  382759  382761  382767  382773  382777  382779  382783  382789  382791  382797  382801  382803  382807  382809  382813  382815  382817  382818  382819  382821  382822  382823  382825  382827  382831  382833  382837  382839  382843  382849  382851  382857  382861  382863  382867  382873  382879  382881  382887  382891  382893  382899  382903  382909  382917  447090 

7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

  角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

等.

常值变换主要指“1”的变换:

等.

三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化). 解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹-’的内存联系”(常和三角换元法联系在一起

      ).

辅助角公式中辅助角的确定:(其中角所在的象限由a, b的符号确定,角的值由确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为的情形.有实数解.

试题详情

6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

试题详情

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

试题详情

4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系.为锐角.

试题详情

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

注意:

.

试题详情

2.弧长公式:,扇形面积公式:,1弧度(1rad).

试题详情

1.终边与终边相同(的终边在终边所在射线上).

终边与终边共线(的终边在终边所在直线上).

终边与终边关于轴对称.

终边与终边关于轴对称.

终边与终边关于原点对称.

一般地:终边与终边关于角的终边对称.

的终边关系由“两等分各象限、一二三四”确定.

试题详情

6.分期付款型应用问题

(1)重视将这类应用题与等差数列或等比数列相联系.

(2)若应用问题像“森林木材问题”那样,既增长又砍伐,则常选用“统一法”统一到“最后”解决.

(3)“分期付款”、“森林木材”等问题的解决过程中,务必“卡手指”,细心计算“年限”作为相应的“指数”. L

试题详情

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),

.

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

, ②

,⑤,

,

,⑧.

特别声明:L运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.

(6)通项转换法。

试题详情

4.等差数列与等比数列的联系

(1)如果数列成等差数列,那么数列(总有意义)必成等比数列.

(2)如果数列成等比数列,那么数列必成等差数列.

(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.

如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.

注意:(1)公共项仅是公共的项,其项数不一定相同,即研究.但也有少数问题中研究,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.

试题详情


同步练习册答案