19. (本小题满分13分)
(Ⅰ) 设均为正数,且,求证 .
(Ⅱ) 求函数的最大值
18. (本小题满分13分)
(Ⅰ) 已知不等式的解集是
解不等式≥
(Ⅱ)设,且x+2y+3z=36,求的最小值.
17.(本小题满分13分)
已知命题:方程在[-1,1]上有解;命题:只有一个实数满足不等式,若命题“p或q”是假命题,求实数a的取值范围.
16. (本小题满分13分)
记函数的定义域为,的
定义域为B.
(Ⅰ)求集合;
(Ⅱ)若, 求实数的取值范围.
15.设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:
①设是平面上的线性变换,,则
②若是平面上的单位向量,对,则是平面上的线性变换;
③对,则是平面上的线性变换;
④设是平面上的线性变换,,则对任意实数均有。
其中的真命题是 (写出所有真命题的编号)
14.已知,则函数的最大值
13. 已知函数若,则 .
12.设集合,,则实数m的取值范围__________;
11.已知集合,若则实数的取值范围是,其中= .
10.定义在R上的函数f(x)满足f(x)= ,则f(3)的值为( )
A.-1 B. -2 C.1 D. 2
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com