6.(★★★★★)设不等式2x-1>m(x2-1)对一切满足|m|≤2的值均成立,则x的范围为_________.
5.(★★★★)函数f(θ)=的最大值为_________,最小值为_________.
4.(★★★★)自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,则光线l所在直线方程为_________.
3.(★★★★)直线2x-y-4=0上有一点P,它与两定点A(4,-1),B(3,4)的距离之差最大,则P点坐标是_________.
2.(★★★★★)三边均为整数且最大边的长为11的三角形的个数为( )
A.15 B.30 C.36 D.以上都不对
1.(★★★★★)设M=,则M与N的大小关系为( )
A.M>N B.M=N C.M<N D.无法判断
7.(★★★★★)已知函数f(x)=
(b<0)的值域是[1,3],
(1)求b、c的值;
(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;
(3)若t∈R,求证:lg≤F(|t-
|-|t+
|)≤lg
.
[科普美文]数学中的不等式关系
数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出,数学是辩证的辅助工具和表现形式,数学中蕴含着极为丰富的辩证唯物主义因素,等与不等关系正是该点的生动体现,它们是对立统一的,又是相互联系、相互影响的;等与不等关系是中学数学中最基本的关系.
等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数学的奇异美.不等关系起源于实数的性质,产生了实数的大小关系,简单不等式,不等式的基本性质,如果把简单不等式中的实数抽象为用各种数学符号集成的数学式,不等式发展为一个人丁兴旺的大家族,由简到繁,形式各异.如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、均值不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法;不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察-归纳-猜想-证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.
数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联系.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题无一不与不等式有着密切的联系.许多问题最终归结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.总之,不等式的应用体现了一定的综合性,灵活多样性.
等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关系.数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻而生动的体现.不等虽没有等的温柔,没有等的和谐,没有等的恰到好处,没有等的天衣无缝,但它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让人心旷神怡,魂牵梦绕呢?
6.(★★★★★)设函数f(x)定义在R上,对任意m、n恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,f(x)>1;
(2)求证:f(x)在R上单调递减;
(3)设集合A={ (x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=,求a的取值范围.
5.(★★★★)某种商品原来定价每件p元,每月将卖出n件,假若定价上涨x成(这里x成即,0<x≤10
.每月卖出数量将减少y成,而售货金额变成原来的 z倍.
(1)设y=ax,其中a是满足≤a<1的常数,用a来表示当售货金额最大时的x的值;
(2)若y=x,求使售货金额比原来有所增加的x的取值范围.
4.(★★★★★)已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两实数根为x1,x2.
(1)如果x1<2<x2<4,设函数f(x)的对称轴为x=x0,求证x0>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com