5.(★★★★★)已知四边形ABCD为直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2
(1)求PC的长;
(2)求异面直线PC与BD所成角的余弦值的大小;
(3)求证:二面角B-PC-D为直二面角.
4.(★★★★)正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为_________.
3.(★★★★★)已知∠AOB=90°,过O点引∠AOB所在平面的斜线OC,与OA、OB分别成45°、60°,则以OC为棱的二面角A-OC-B的余弦值等于_________.
2.(★★★★★)设△ABC和△DBC所在两平面互相垂直,且AB=BC=BD=a,∠CBA=
∠CBD=120°,则AD与平面BCD所成的角为( )
A.30° B.45° C.60° D.75°
1.(★★★★★)在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是( )
A. B. C. D.
8.(★★★★★)如图,已知平行六面体ABCD-A1B1C1D1的底面是菱形且∠C1CB=
∠C1CD=∠BCD=60°,
(1)证明:C1C⊥BD;
(2)假定CD=2,CC1=,记面C1BD为α,面CBD为β,求二面角α-BD-β的平面角的余弦值;
(3)当的值为多少时,可使A1C⊥面C1BD?
7.(★★★★)如图,正三棱柱ABC-A1B1C1的各棱长都相等,D、E分别是CC1和AB1的中点,点F在BC上且满足BF∶FC=1∶3.
(1)若M为AB中点,求证:BB1∥平面EFM;
(2)求证:EF⊥BC;
(3)求二面角A1-B1D-C1的大小.
6.(★★★★)如图,在正三棱锥A-BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分别交AB、BD、DC、CA于点E、F、G、H.
(1)判定四边形EFGH的形状,并说明理由.
(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明.
5.(★★★★)如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.
(1)求证:CD⊥PD;
(2)求证:EF∥平面PAD;
(3)当平面PCD与平面ABCD成多大角时,直线EF⊥平面PCD?
4.(★★★★)设a,b是异面直线,下列命题正确的是_________.
①过不在a、b上的一点P一定可以作一条直线和a、b都相交
②过不在a、b上的一点P一定可以作一个平面和a、b都垂直
③过a一定可以作一个平面与b垂直
④过a一定可以作一个平面与b平行
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com