7.(★★★★)如图,已知三棱柱A1B1C1-ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.
(1)求点A到平面B1BCC1的距离;
(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.
6.(★★★★★)已知正四棱柱ABCD-A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:
(1)截面EAC的面积;
(2)异面直线A1B1与AC之间的距离;
(3)三棱锥B1-EAC的体积.
5.(★★★★★)在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2,如图:
(1)求证:平面A1BC1∥平面ACD1;
(2)求(1)中两个平行平面间的距离;
(3)求点B1到平面A1BC1的距离.
4.(★★★★)如右上图,ABCD与ABEF均是正方形,如果二面角E-AB-C的度数为
30°,那么EF与平面ABCD的距离为_________.
3.(★★★★)如左下图,空间四点A、B、C、D中,每两点所连线段的长都等于a,动点P在线段AB上,动点Q在线段CD上,则P与Q的最短距离为_________.
2.(★★★★)三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,设平面A1BC1与平面ABC的交线为l,则A1C1与l的距离为( )
A.
B.
C.2.6 D.2.4
1.(★★★★★)正方形ABCD边长为2,E、F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图),M为矩形AEFD内一点,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值为,那么点M到直线EF的距离为( )
8.(★★★★★)设D是△ABC的BC边上一点,把△ACD沿AD折起,使C点所处的新位置C′在平面ABD上的射影H恰好在AB上.
(1)求证:直线C′D与平面ABD和平面AHC′所成的两个角之和不可能超过90°;
(2)若∠BAC=90°,二面角C′-AD-H为60°,求∠BAD的正切值.
7.(★★★★★)一副三角板拼成一个四边形ABCD,如图,然后将它沿BC折成直二面角.
(1)求证:平面ABD⊥平面ACD;
(2)求AD与BC所成的角;
(3)求二面角A-BD-C的大小.
6.(★★★★)设△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=
∠DBC=120°
求:(1)直线AD与平面BCD所成角的大小;
(2)异面直线AD与BC所成的角;
(3)二面角A-BD-C的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com