9.已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;
(3)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.
解:(1)可判定点(2,-6)在曲线y=f(x)上.
∵f′(x)=(x3+x-16)′=3x2+1,
∴在点(2,-6)处的切线的斜率为k=f′(2)=13.
∴切线的方程为y=13(x-2)+(-6),
即y=13x-32.
(2)法一:设切点为(x0,y0),
则直线l的斜率为f′(x0)=3+1,
∴直线l的方程为y=(3+1)(x-x0)++x0-16,
又∵直线l过点(0,0),
∴0=(3+1)(-x0)++x0-16,
整理得,=-8,∴x0=-2,
∴y0=(-2)3+(-2)-16=-26,
k=3×(-2)2+1=13.
∴直线l的方程为y=13x,切点坐标为(-2,-26).
法二:设直线l的方程为y=kx,切点为(x0,y0),
则k==,
又∵k=f′(x0)=3+1,
∴=3+1,
解之得x0=-2,
∴y0=(-2)3+(-2)-16=-26,
k=3×(-2)2+1=13.
∴直线l的方程为y=13x,切点坐标为(-2,-26).
(3)∵切线与直线y=-+3垂直,
∴切线的斜率k=4.
设切点的坐标为(x0,y0),则f′(x0)=3+1=4,
∴x0=±1,
∴或
切线方程为y=4(x-1)-14或y=4(x+1)-18.
即y=4x-18或y=4x-14.
题组三 |
导数的灵活应用 |
8.(2009·福建高考)若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是________.
解析:f′(x)=2ax+.
∵f(x)存在垂直于y轴的切线,
∴f′(x)=0有解,即2ax+=0有解,
∴a=-,∴a∈(-∞,0).
答案:(-∞,0)
7.(2009·宁夏、海南高考)曲线y=xex+2x+1在点(0,1)处的切线方程为________________.
解析:y′=ex+x·ex+2,y′|x=0=3,
∴切线方程为y-1=3(x-0),∴y=3x+1.
答案:y=3x+1
6.(2010·福建四地六校联考)下列曲线的所有切线构成的集合中,存在无数对互相垂直的切线的曲线是 ( )
A.f(x)=ex B.f(x)=x3 C.f(x)=lnx D.f(x)=sinx
解析:设切点的横坐标为x1,x2
则存在无数对互相垂直的切线,即f′(x1)·f′(x2)=-1有无数对x1,x2使之成立
对于A由f′(x)=ex>0,
所以不存在f′(x1)·f′(x2)=-1成立;
对于B由于f′(x)=3x2>0,
所以也不存在f′(x1)·f′(x2)=-1成立;
对于C由于f(x)=lnx的定义域为(0,+∞),
∴f′(x)=>0,
对于Df′(x)=cosx,∴f′(x1)·f′(x2)=cosx1·cosx2,当x1=2kπ,x2=(2k+1)π,k∈Z,f′(x1)·f′(x2)=-1恒成立.
答案:D
5.(2009·辽宁高考)曲线y=在点(1,-1)处的切线方程为 ( )
A.y=x-2 B.y=-3x+2
C.y=2x-3 D.y=-2x+1
解析:y′=()′=,∴k=y′|x=1=-2.
l:y+1=-2(x-1),即y=-2x+1.
答案:D
4.设f(x)=(ax+b)sinx+(cx+d)cosx,试确定常数a,b,c,d,使得f′(x)=xcosx.
解:由已知f′(x)=[(ax+b)sinx+(cx+d)cosx]′
=[(ax+b)sinx]′+[(cx+d)cosx]′
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)·(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-cx-d)sinx+(ax+b+c)cosx.
又∵f′(x)=xcosx,
∴必须有即
解得a=d=1,b=c=0.
题组二 |
导数的几何意义 |
3.(2009·安徽高考)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是 ( )
A.[-2,2] B.[,] C.[,2] D.[,2]
解析:∵f′(x)=sinθ·x2+cosθ·x,
∴f′(1)=sinθ+cosθ=2sin(θ+).
∵θ∈[0,],∴θ+∈[,].
∴sin(θ+)∈[,1],∴f′(1)∈[,2].
答案:D
2.设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2010(x)= ( )
A.sinx B.-sinx C.cosx D.-cosx
解析:∵f1(x)=(cosx)′=-sinx,f2(x)=(-sinx)′=-cosx,f3(x)=(-cosx)′=sinx,f4(x)=(sinx)′=cosx,…,由此可知fn(x)的值周期性重复出现,周期为4,
故f2010(x)=f2(x)=-cosx.
答案:D
1.设f(x)=xlnx,若f′(x0)=2,则x0= ( )
A.e2 B.e C. D.ln2
解析:f′(x)=x×+1×lnx=1+lnx,由1+lnx0=2,
知x0=e.
答案:B
12.(文)某城市在发展过程中,交通状况逐渐受到大家更多的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出:
y=
求从上午6点到中午12点,通过该路段用时最多的时刻.
解:(1)当6≤t<9时,
y′=-t2-t+36=-(t2+4t-96)
=-(t+12)(t-8).
令y′=0,得t=-12或t=8.
∴当t=8时,y有最大值.
ymax=18.75(分钟).
(2)当9≤t≤10时,y=t+是增函数,
∴当t=10时,ymax=15(分钟).
(3)当10<t≤12时,y=-3(t-11)2+18,
∴当t=11时,ymax=18(分钟).
综上所述,上午8时,通过该路段用时最多,为18.75分钟.
(理)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,多订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式.
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利 润又是多少元?
解:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x0个,则x0=100+=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.
(2)当0<x≤100时,P=60;
当100<x<550时,P=60-0.02(x-100)=62-;
当x≥550时,P=51.
所以P=f(x)=
(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则
L=(P-40)x=
当x=500时,L=6000;
当x=1000时,L=11000.
因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com