9、 (2005重庆卷)
已知aÎR,讨论函数f(x)=ex(x2+ax+a+1)的极值点的个数。
8. (2005山东卷)
已知是函数的一个极值点,其中,
(I)求与的关系式;
(II)求的单调区间;
(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.
8、(2005辽宁卷)
函数在区间(0,+∞)内可导,导函数是减函数,且 设是曲线在点()得的切线方程,并设函数
(Ⅰ)用、、表示m;
(Ⅱ)证明:当;
(Ⅲ)若关于的不等式上恒成立,其中a、b为实数,
求b的取值范围及a与b所满足的关系.
7、(2005湖南卷)
已知函数f(x)=lnx,g(x)=ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.
6、(2005湖南卷)
设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.
(Ⅰ)用表示a,b,c;
(Ⅱ)若函数在(-1,3)上单调递减,求的取值范围.
5、(2005湖北卷)
已知向量在区间(-1,1)上是增函数,求t的取值范围.
解法1:依定义
开口向上的抛物线,故要使在区间
(-1,1)上恒成立
.
解法2:依定义
的图象是开口向下的抛物线,
4、(2005福建卷)
已知函数的图象在点M(-1,f(x))处的切线方程为x+2y+5=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
3、( 全国卷III)
已知函数,
(Ⅰ)求的单调区间和值域;
(Ⅱ)设,函数,若对于任意,总存在,使得成立,求的取值范围
2、 (2005全国卷Ⅱ)
已知a≥ 0 ,函数f(x) = ( -2ax )
(1)当X为何值时,f(x)取得最小值?证明你的结论;
(2)设 f(x)在[ -1,1]上是单调函数,求a的取值范围.
1.(2005全国卷Ⅱ)
设a为实数,函数
(Ⅰ)求的极值.
(Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com