1、了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用。
18.如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
(1)取OB中点E,连接ME,NE又
(2) 为异面直线与所成的角(或其补角)
作连接
,
所以 与所成角的大小为
(3)点A和点B到平面OCD的距离相等,连接OP,过点A作
于点Q,
又 ,线段AQ的长就是点A到平面OCD的距离,
,所以点B到平面OCD的距离为
17. 如图,在四棱锥中,底面是矩形.已知.
(Ⅰ)证明平面;
(Ⅱ)求异面直线与所成的角的大小;
(Ⅲ)求二面角的大小.
(Ⅰ)证明:在中,由题设可得
于是.在矩形中,.又,
所以平面.
(Ⅱ)解:由题设,,所以(或其补角)是异面直线与所成的角.
在中,由余弦定理得
由(Ⅰ)知平面,平面,
所以,因而,于是是直角三角形,故.
所以异面直线与所成的角的大小为.
(Ⅲ)解:过点P做于H,过点H做于E,连结PE
因为平面,平面,所以.又,
因而平面,故HE为PE再平面ABCD内的射影.由三垂线定理可知,
,从而是二面角的平面角。
由题设可得,
于是再中,所以二面角的大小为.
16.在体积为的球的表面上有A,B,C三点,AB=1,BC=,A,C两点的球面距离为,则球心到平面ABC的距离为_________.
15.如图,已知球O点面上四点A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=,则球O点体积等于___________。
14.若三棱锥的三个侧棱两两垂直,且侧棱长均为,则其外接球的表面积是 9.
13.已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为,则该正四棱柱的体积等于______2________。
12.若一个球的体积为,则它的表面积为_______12.
11.一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,那么这个球的体积为 ____
10.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com