0  393901  393909  393915  393919  393925  393927  393931  393937  393939  393945  393951  393955  393957  393961  393967  393969  393975  393979  393981  393985  393987  393991  393993  393995  393996  393997  393999  394000  394001  394003  394005  394009  394011  394015  394017  394021  394027  394029  394035  394039  394041  394045  394051  394057  394059  394065  394069  394071  394077  394081  394087  394095  447090 

2.(2009·重庆高考)命题“若一个数是负数,则它的平方是正数”的逆命题是   ( )

A.“若一个数是负数,则它的平方不是正数”

B.“若一个数的平方是正数,则它是负数”

C.“若一个数不是负数,则它的平方不是正数”

D.“若一个数的平方不是正数,则它不是负数”

解析:结论与条件互换位置选B.

答案:B

试题详情

1.原命题:“设abc∈R,若ac2bc2,则ab”的逆命题、否命题、逆否命题中真命题共有                               ( )

A.0个       B.1个      C.2个      D.3个

解析:由题意可知,原命题正确,逆命题错误,所以否命题错误,而逆否命题正确.

答案:B

试题详情

12.已知c>0,设命题p:函数ycx为减函数.命题q:当x∈[,2]时,函数f(x)=x+>恒成立.如果pq为真命题,pq为假命题.求c的取值范围.

解:由命题p知:0<c<1.

由命题q知:2≤x+≤,

要使此式恒成立,则2>,即c>.

又由pq为真,pq为假知,

pq必有一真一假,

p为真,q为假时,c的取值范围为0<c≤.

p为假,q为真时,c≥1.

综上,c的取值范围为{c|0<c≤或c≥1}.  

试题详情

11.(2010·苏北三市联考)若命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围是  .

解析:∵∃x∈R,使得x2+(a-1)x+1<0是真命题

∴(a-1)2-4>0,即(a-1)2>4,

a-1>2或a-1<-2,

a>3或a<-1.

答案:(-∞,-1)∪(3,+∞)

试题详情

10.已知命题p:“∀x∈[1,2],x2a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”.若命题“pq”是真命题,则实数a的取值范围为            ( )

A.a≤-2或a=1           B.a≤-2或1≤a≤2

C.a≥1                D.-2≤a≤1

解析:由已知可知pq均为真命题,由命题p为真得a≤1,由命题q为真得a≤-2或a≥1,所以a≤-2,或a=1.

答案:A

试题详情

9.已知命题p:∀x∈R,x2x+<0;命题q:∃x∈R,sinx+cosx=.则下列判断正确的是                                ( )

A.p是真命题            B.q是假命题

C.  p是假命题          D.  q是假命题

解析:∀x∈R,x2x+=(x-)2≥0,

p为假命题;

sinx+cosx=sin(x+)知q为真命题.

答案:D

题组四
求参数的取值范围

试题详情

8.命题:“对任意的x∈R,x3x2+1≤0”的否定是              ( )

A.不存在x∈R,x3x2+1≤0

B.存在x0∈R,xx+1≤0

C.存在x0∈R,xx+1>0

D.对任意的x∈R,x3x2+1>0

解析:“对任意x∈R,x3x2+1≤0”等价于关于x的不等式:x3x2+1≤0恒成立,其否定为:x3x2+1≤0不恒成立,即存在x0∈R,使得xx+1>0成立,故选C.

答案:C

试题详情

7.(2009·天津高考)命题“存在x0∈R,2x0≤0”的否定是            ( )

A.不存在x0∈R,2x0>0        B.存在x0∈R,2x0≥0

C.对任意的x∈R,2x≤0        D.对任意的x∈R,2x>0

解析:原命题的否定可写为:“不存在x0∈R,2x0≤0”.其等价命题是:“对任意的x∈R,2x>0”.

答案:D

试题详情

6.下列命题中真命题的个数是                       ( )

①∀x∈R,x4x2

②若pq是假命题,则pq都是假命题

③命题“∀x∈R,x3+2x2+4≤0”的否定为“∃x0∈R,x+2x+4>0”

A.0       B.1        C.2          D.3

解析:只有③是正确的.

答案:B

题组三
含有一个量词的命题的否定

试题详情

5.(2009·宁夏、海南高考)有四个关于三角函数的命题:            ( )

p1:∃x∈R,sin2+cos2

p2:∃xy∈R,sin(xy)=sinx-siny

p3:∀x∈[0,π], =sinx

p4:sinx=cosyx+y

其中的假命题是                            ( )

A.p1p4     B.p2p4     C.p1p3      D.p2p3

解析:sin2+cos2=1恒成立,p1错;

xy=0时,sin(xy)=sinx-sinyp2对;

∵=sin2x,当x∈[0,π],sinx≥0,

∴  =sinxp3对;当xπy=时,

sinx=cosy成立,但x+y≠,p4错.

答案:A

试题详情


同步练习册答案