1.数的大小关系是( )
A. B. C. D.
20.记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,y0)为坐标的点是函数f(x)的图象上的“稳定点”.
(1)若函数f(x)=的图象上有且只有两个相异的“稳定点”,试求实数a的取值范围;
(2)已知定义在实数集R上的奇函数f(x)存在有限个“稳定点”,求证:f(x)必有奇数个“稳定点”.
必修1 第2章 函数概念与基本初等函数Ⅰ
§2.2指数函数
重难点:对分数指数幂的含义的理解,学会根式与分数指数幂的互化并掌握有理指数幂的运算性质;指数函数的性质的理解与应用,能将讨论复杂函数的单调性、奇偶性问题转化为讨论比较简单的函数的有关问题.
考纲要求:①了解指数函数模型的实际背景;
②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;
③理解指数函数的概念,并理解指数函数的单调性与函数图像通过的特殊点;
④知道指数函数是一类重要的函数模型.
经典例题:求函数y=3的单调区间和值域.
当堂练习:
19.定义在(-1,1)上的函数f(x)满足:对任意x、y∈(-1,1)都有f(x)+f(y)=f().
(1)求证:函数f(x)是奇函数;
(2)如果当x∈(-1,0)时,有f(x)>0,求证:f(x)在(-1,1)上是单调递减函数;
18.定义在R上的函数f(x)满足:如果对任意x1,x2∈R,都有f()≤[f(x1)+f(x2)],则称函数f(x)是R上的凹函数.已知函数f(x)=ax2+x(a∈R且a≠0),求证:当a>0时,函数f(x)是凹函数;
17.作出函数的图象,并利用图象回答下列问题:
(1)函数在R上的单调区间; (2)函数在[0,4]上的值域.
16.设,则 .
15.定义域为上的函数f(x)是奇函数,则a= .
14. 设f(x)=2x+3,g(x+2)=f(x-1),则g(x)= .
13.已知函数,则 .
12.如果奇函数y=f(x)在区间[3,7]上是增函数,且最小值为5,则在区间[-7,-3]上( )
A.增函数且有最小值-5 B. 增函数且有最大值-5 C.减函数且有最小值-5 D.减函数且有最大值-5
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com