26.(09·安徽·22)(14分)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示。设运动员的质量为65kg,吊椅的质量为15kg,不计定滑轮与绳子间的摩擦。重力加速度取。当运动员与吊椅一起正以加速度上升时,试求
(1)运动员竖直向下拉绳的力;
(2)运动员对吊椅的压力。
答案:440N,275N
解析:解法一:(1)设运动员受到绳向上的拉力为F,由于跨过定滑轮的两段绳子拉力相等,吊椅受到绳的拉力也是F。对运动员和吊椅整体进行受力分析如图所示,则有:
由牛顿第三定律,运动员竖直向下拉绳的力
(2)设吊椅对运动员的支持力为FN,对运动员进行受力分析如图所示,则有:
由牛顿第三定律,运动员对吊椅的压力也为275N
解法二:设运动员和吊椅的质量分别为M和m;运动员竖直向下的拉力为F,对吊椅的压力大小为FN。
根据牛顿第三定律,绳对运动员的拉力大小为F,吊椅对运动员的支持力为FN。分别以运动员和吊椅为研究对象,根据牛顿第二定律
①
②
由①②得
25.(09·山东·24)(15分)如图所示,某货场而将质量为m1=100 kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R=1.8 m。地面上紧靠轨道次排放两声完全相同的木板A、B,长度均为l=2m,质量均为m2=100 kg,木板上表面与轨道末端相切。货物与木板间的动摩擦因数为1,木板与地面间的动摩擦因数=0.2。(最大静摩擦力与滑动摩擦力大小相等,取g=10 m/s2)
(1)求货物到达圆轨道末端时对轨道的压力。
(2)若货物滑上木板4时,木板不动,而滑上木板B时,木板B开始滑动,求1应满足的条件。
(3)若1=0。5,求货物滑到木板A末端时的速度和在木板A上运动的时间。
解析:(1)设货物滑到圆轨道末端是的速度为,对货物的下滑过程中根据机械能守恒定律得,
①
设货物在轨道末端所受支持力的大小为,根据牛顿第二定律得,②
联立以上两式代入数据得③
根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N,方向竖直向下。
(2)若滑上木板A时,木板不动,由受力分析得④
若滑上木板B时,木板B开始滑动,由受力分析得⑤
联立④⑤式代入数据得⑥。
(3),由⑥式可知,货物在木板A上滑动时,木板不动。设货物在木板A上做减速运动时的加速度大小为,由牛顿第二定律得⑦
设货物滑到木板A末端是的速度为,由运动学公式得⑧
联立①⑦⑧式代入数据得⑨
设在木板A上运动的时间为t,由运动学公式得⑩
联立①⑦⑨⑩式代入数据得。
考点:机械能守恒定律、牛顿第二定律、运动学方程、受力分析
24.(09·全国Ⅰ·25) (18分) 如图所示,倾角为θ的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为l。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为μ,重力加速度为g.设碰撞时间极短,求
(1)工人的推力;
(2)三个木箱匀速运动的速度;
(3)在第一次碰撞中损失的机械能。
答案:(1);
(2);
(3)。
解析:(1)当匀速时,把三个物体看作一个整体受重力、推力F、摩擦力f和支持力.根据平衡的知识有;
(2)第一个木箱与第二个木箱碰撞之前的速度为V1,加速度
根据运动学公式或动能定理
有,碰撞后的速度为V2根据动量守恒有,即碰撞后的速度为,然后一起去碰撞第三个木箱,设碰撞前的速度为V3。
从V2到V3的加速度为,根据运动学公式有,得,跟第三个木箱碰撞根据动量守恒有,得就是匀速的速度;
(3)设第一次碰撞中的能量损失为,根据能量守恒有,带入数据得。
23.(09·安徽·17)为了节省能量,某商场安装了智能化的电动扶梯。无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转。一顾客乘扶梯上楼,恰好经历了这两个过程,如图所示。那么下列说法中正确的是 ( C )
A. 顾客始终受到三个力的作用
B. 顾客始终处于超重状态
C. 顾客对扶梯作用力的方向先指向左下方,再竖直向下
D. 顾客对扶梯作用的方向先指向右下方,再竖直向下
解析:在慢慢加速的过程中顾客受到的摩擦力水平向左,电梯对其的支持力和摩擦力的合力方向指向右上,由牛顿第三定律,它的反作用力即人对电梯的作用方向指向向左下;在匀速运动的过程中,顾客与电梯间的摩擦力 等于零,顾客对扶梯的作用仅剩下压力,方向沿竖直向下。
22.(09·山东·22)图示为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,质量为M的木箱与轨道的动摩擦因数为。木箱在轨道端时,自动装货装置将质量为m的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,与轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程。下列选项正确的是 ( BC )
A.m=M
B.m=2M
C.木箱不与弹簧接触时,上滑的加速度大于下滑的加速度
D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能
解析:受力分析可知,下滑时加速度为,上滑时加速度为,所以C正确。设下滑的距离为l,根据能量守恒有,得m=2M。也可以根据除了重力、弹性力做功以外,还有其他力(非重力、弹性力)做的功之和等于系统机械能的变化量,B正确。在木箱与货物从顶端滑到最低点的过程中,减少的重力势能转化为弹簧的弹性势能和内能,所以D不正确。
考点:能量守恒定律,机械能守恒定律,牛顿第二定律,受力分析
提示:能量守恒定律的理解及应用。
21.(09·山东·16)如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m 的小滑块,在水平力F的作用下静止P点。设滑块所受支持力为FN。OF与水平方向的夹角为0。下列关系正确的是 ( A )
A. B.F=mgtan
C. D.FN=mgtan
解析:对小滑块受力分析如图所示,根据三角形定则可得,,所以A正确。
考点:受力分析,正交分解或三角形定则。提示:支持力的方向垂直于接触面,即指向圆心。正交分解列式求解也可。
20.(09·广东文科基础·58)如图8所示,用一轻绳系一小球悬于O点。现将小球拉至水平位置,然后释放,不计阻力。小球下落到最低点的过程中,下列表述正确的是 ( A )
A.小球的机械能守恒
B.小球所受的合力不变
C.小球的动能不断减小
D.小球的重力势能增加
19.(09·海南物理·3)两刚性球a和b的质量分别为和、直径分别为个(>)。将a、b球依次放入一竖直放置、内径为的平底圆筒内,如图所示。设a、b两球静止时对圆筒侧面的压力大小分别为和,筒底所受的压力大小为.已知重力加速度大小为g。若所以接触都是光滑的,则 ( A )
A.
B.
C.
D.
答案:A
解析:对两刚性球a和b整体分析,竖直方向平衡可知F=(+)g、水平方向平衡有=。
7.(09·四川·20)如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度V1从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为V2(V2<V1)。若小物体电荷量保持不变,OM=ON,则 ( AD )
A.小物体上升的最大高度为
B.从N到M的过程中,小物体的电势能逐渐减小
C.从M到N的过程中,电场力对小物体先做负功后做正功
D.从N到M的过程中,小物体受到的摩擦力和电场力均是先增大后减小
解析:设斜面倾角为θ、上升过程沿斜面运动的最大距离为L。因为OM=ON,则MN两点电势相等,小物体从M到N、从N到M电场力做功均为0。上滑和下滑经过同一个位置时,垂直斜面方向上电场力的分力相等,则经过相等的一小段位移在上滑和下滑过程中电场力分力对应的摩擦力所作的功均为相等的负功,所以上滑和下滑过程克服电场力产生的摩擦力所作的功相等、并设为W1。在上滑和下滑过程,对小物体,应用动能定理分别有:-mgsinθL-μmgcosθL-W1=-和mgsinθL-μmgcosθL-W1=,上两式相减可得sinθL=,A对;由OM=ON,可知电场力对小物体先作正功后作负功,电势能先减小后增大,BC错;从N到M的过程中,小物体受到的电场力垂直斜面的分力先增大后减小,而重力分力不变,则摩擦力先增大后减小,在此过程中小物体到O的距离先减小后增大,根据库仑定律可知小物体受到的电场力先增大后减小,D对。
18.(09·宁夏·21)水平地面上有一木箱,木箱与地面之间的动摩擦因数为。现对木箱施加一拉力F,使木箱做匀速直线运动。设F的方向与水平面夹角为,如图,在从0逐渐增大到90°的过程中,木箱的速度保持不变,则 ( AC )
A.F先减小后增大
B.F一直增大
C.F的功率减小
D.F的功率不变
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com