1.为了得到函数y=3×()x的图象,可以把函数y= ()x的图象 ( )
A.向左平移3个单位长度
B.向右平移3个单位长度
C.向左平移1个单位长度
D.向右平移1个单位长度
解析:∵y=3×()x=()x-1,
∴y=3×()x的图象可以把函数y=()x的图象向右平移1个单位.
答案:D
12.(文)已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)的区间[-1,a-2]上单调递增,求实数a的取值范围.
解:(1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),
于是x<0时,f(x)=x2+2x=x2+mx,
所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象知
所以1<a≤3,故实数a的取值范围是(1,3].
(理)已知定义域为R的函数f(x)=是奇函数.
(1)求a、b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
解:(1)因为f(x)是R上的奇函数,所以f(0)=0,
即=0,解得b=1,从而有f(x)=.
又由f(1)=-f(-1),知=-,解得a=2.
故a=2,b=1.
(2)由(1)知f(x)==-+.
由上式易知f(x)在(-∞,+∞)上为减函数.
又因f(x)是奇函数,
从而不等式f(t2-2t)+f(2t2-k)<0
等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).
因f(x)是减函数,由上式推得t2-2t>-2t2+k,
即对一切t∈R有3t2-2t-k>0.
从而判别式Δ=4+12k<0,解得k<-.
11.(2009·山东高考)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2] 上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4, 则x1+x2+x3+x4= .
解析:由f(x-4)=-f(x)⇒f(4-x)=f(x),
故函数图象关于直线x=2对称,
又函数f(x)在[0,2]上是增函数,且为奇函数,
故f(0)=0,故函数f(x)在(0,2]上大于0,
根据对称性知函数f(x)在[2,4)上大于0,
同理推知函数f(x)在(4,8)上小于0,故在区间(0,8)上方程f(x)=m(m>0)的两根关于 直线x=2对称,
故此两根之和等于4,
根据f(x-4)=-f(x)⇒f(x-8)=-f(x-4)=f(x),
函数f(x)以8为周期,
故在区间(-8,0)上方程f(x)=m(m>0)的两根关于直线x=-6对称,此两根之和等 于-12,
综上四个根之和等于-8.
答案:-8
10.(2009·福建高考)定义在R上的偶函数f(x)的部分图象如右图所示,
则在(-2,0)上,下列函数中与f(x)的单调性不同的是 ( )
A.y=x2+1
B.y=|x|+1
C.y=
D.y=
解析:∵f(x)为偶函数,由图象知,
f(x)在(-2,0)上为减函数,
而y=x3+1在(-∞,0)上为增函数,故选C.
答案:C
9.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有<0,则( )
A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)
C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)
解析:由已知<0,得f(x)在x∈[0,+∞)上单调递减,由偶函数性质得f(3)<f(-2)<f(1),故选A.此类题能用数形结合更好.
答案:A
8.(2010·滨州模拟)定义在R上的奇函数f(x)满足:当x>0时,f(x)=2008x+log2008x,则方程f(x)=0的实根的个数为 .
解析:当x>0时,f(x)=0即2008x=-log2008x,在同一坐标系下分别画出函数f1(x)=2008x,f2(x)=-log2008x的图象(图略),可知两个图象只有一个交点,即方程f(x)=0只有一个实根,又因为f(x)是定义在R上的奇函数,所以当x<0时,方程f(x)=0也有一个实根,又因为f(0)=0,所以方程f(x)=0的实根的个数为3.
答案:3
题组三 |
函数的奇偶性与单调性的综合问题 |
7.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,在(0,+∞)上单调递减,且f()>0>f(-),则方程f(x)=0的根的个数为 ( )
A.0 B.1 C.2 D.3
解析:由于函数是偶函数,且在(0,+∞)上单调递减,因此在(-∞,0)上单调递增,又因为f()>0>f(-)=f(),所以函数f(x)在(,)上与x轴有一个交点,必在(-,-)上也有一个交点,故方程f(x)=0的根的个数为2.
答案:C
6.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)= ( )
A.0 B.1 C. D.5
解析:由f(1)=,
对f(x+2)=f(x)+f(2),
令x=-1,
得f(1)=f(-1)+f(2).
又∵f(x) 为奇函数,∴f(-1)=-f(1).
于是f(2)=2f(1)=1;
令x=1,得f(3)=f(1)+f(2)=,
于是f(5)=f(3)+f(2)=.
答案:C
5.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
A.-2 B.2 C.-98 D.98
解析:由f(x+4)=f(x),得f(7)=f(3)=f(-1),
又f(x)为奇函数,∴f(-1)=-f(1),
f(1)=2×12=2,∴f(7)=-2.故选A.
答案:A
4.已知函数f (x)=ax4+bcosx-x,且f (-3)=7,则f (3)的值为 ( )
A.1 B.-7 C.4 D.-10
解析:设g(x)=ax4+bcosx,则g(x)=g(-x).由f (-3)=g(-3)+3,得g(-3)=f(-3)-3=4,所以g(3)=g(-3)=4,所以f (3)=g(3)-3=4-3=1.
答案:A
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com