5. 、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:
对阵队员 |
A队队员胜的概率 |
B队队员胜的概率 |
A1对B1 |
|
|
A2对B2 |
|
|
A3对B3 |
|
|
现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为,
(1)求,的概率分布; (2)求,
解:(Ⅰ),的可能取值分别为3,2,1,0
根据题意知,所以
(Ⅱ);
因为,所以
4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.2
解:从5个球中同时取出2个球,出现红球的分布列为
|
0 |
1 |
2 |
P |
|
|
|
3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望
解:设表示产生故障的仪器数,Ai表示第i台仪器出现故障(i=1、2、3)
表示第i台仪器不出现故障,则:
p(=1)=p(A1··)+ p(·A2·)+ p(··A3)
=p1(1-p2) (1-p3)+ p2(1-p1) (1-p3)+ p3(1-p1) (1-p2)
= p1+ p2+p3-2p1p2-2p2p3-2p3p1+3p1p2p3
p(=2)=p(A1· A2·)+ p(A1··)+ p(·A2·A3)
= p1p2 (1-p3)+ p1p3(1-p2)+ p2p3(1-p1)
= p1p2+ p1p3+ p2p3-3p1p2p3
p(=3)=p(A1· A2·A3)= p1p2p3
∴=1×p(=1)+2×p(=2)+3×p(=3)= p1+p2+p3
注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望
2.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数
①求的概率分布列
②求的数学期望
解:①依题意的取值为0、1、2、3、4
=0时,取2黑 p(=0)=
=1时,取1黑1白 p(=1)=
=2时,取2白或1红1黑p(=2)= +
=3时,取1白1红,概率p(=3)=
=4时,取2红,概率p(=4)=
|
0 |
1 |
2 |
3 |
4 |
p |
|
|
|
|
|
∴分布列为
(2)期望E=0×+1×+2×+3×+4×=
1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是 (用数字作答)
解:令取取黄球个数 (=0、1、2)则的要布列为
|
0 |
1 |
2 |
p |
|
|
|
于是 E()=0×+1×+2×=0.8
故知红球个数的数学期望为1.2
(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ 公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np
3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.
分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求Eξ.
解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=.
∴ P(ξ=k)=Pn(k)=C)k(1-)n-k(k=0,1,2,….,n).
∴ ξ-B(n,),故 Eξ =n×=
2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
⑴他罚球1次的得分ξ的数学期望;
⑵他罚球2次的得分η的数学期望;
⑶他罚球3次的得分ξ的数学期望.
解:⑴因为,,所以
1×+0×
⑵η的概率分布为
η |
0 |
1 |
2 |
P |
|
|
|
所以 0×+1×+2×=1.4.
⑶ξ的概率分布为
ξ |
0 |
1 |
2 |
3 |
P |
|
|
|
|
所以 0×+1×+2×=2.1.
1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( )
A.4; B.5; C.4.5; D.4.75
答案:C
例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望
解:因为,
所以
例2. 随机抛掷一枚骰子,求所得骰子点数的期望
解:∵,
=3.5
例3. 有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)
解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率:
(=1,2,…,10)
需要抽查10次即前9次取出的都是正品的概率:由此可得的概率分布如下:
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
0.15 |
0.1275 |
0.1084 |
0.092 |
0.0783 |
0.0666 |
0.0566 |
0.0481 |
0.0409 |
0.2316 |
根据以上的概率分布,可得的期望
例4. 一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望
解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~ B(20,0.9),,
由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他们在测验中的成绩的期望分别是:
例5.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.
解:抛掷骰子所得点数ξ的概率分布为
ξ |
1 |
2 |
3 |
4 |
5 |
6 |
P |
|
|
|
|
|
|
所以
1×+2×+3×+4×+5×+6×
=(1+2+3+4+5+6)×=3.5.
抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.
例6.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η
(Ⅰ)求租车费η关于行车路程ξ的关系式;
(Ⅱ)若随机变量ξ的分布列为
ξ |
15 |
16 |
17 |
18 |
P |
0.1 |
0.5 |
0.3 |
0.1 |
求所收租车费η的数学期望.
(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?
解:(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2;
(Ⅱ)
∵ η=2ξ+2
∴ 2Eξ+2=34.8 (元)
故所收租车费η的数学期望为34.8元.
(Ⅲ)由38=2ξ+2,得ξ=18,5(18-15)=15
所以出租车在途中因故停车累计最多15分钟
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com