0  396297  396305  396311  396315  396321  396323  396327  396333  396335  396341  396347  396351  396353  396357  396363  396365  396371  396375  396377  396381  396383  396387  396389  396391  396392  396393  396395  396396  396397  396399  396401  396405  396407  396411  396413  396417  396423  396425  396431  396435  396437  396441  396447  396453  396455  396461  396465  396467  396473  396477  396483  396491  447090 

3、将v1 、v的替代式代入①式解v2即可。结果:v2 =

(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?

解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。

答:0 、 、0 。

(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?

解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。

答:

进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?

解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。

据运动的合成,有:

 =  +  =  -

其中必然是沿地面向左的,为了书写方便,我们设其大小为v2必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v 。根据矢量减法的三角形法则,可以得到(设大小为v1)的示意图,如图16所示。同时,我们将v1的x、y分量v1x和v1y也描绘在图中。

由图可得:v1y =(v2 + v1x)tgθ                 ①

质点和半球系统水平方向动量守恒,有:Mv2 = mv1x         ②

对题设过程,质点和半球系统机械能守恒,有:mgR(1-cosθ) = M + m ,即:

mgR(1-cosθ) = M + m( + )           ③

三个方程,解三个未知量(v2 、v1x 、v1y)是可行的,但数学运算繁复,推荐步骤如下--

试题详情

2、在回到③、④两式,得:

v1 = v2 ,  v = v2

试题详情

物理情形:如图14所示,两根长度均为L的刚性轻杆,一端通过质量为m的球形铰链连接,另一端分别与质量为m和2m的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2

模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系--两杆不可伸长。

(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?

设末态(杆夹角90°)左边小球的速度为v1(方向:水平向左),球形铰链的速度为v(方向:和竖直方向夹θ角斜向左),

对题设过程,三球系统机械能守恒,有:

mg( L-L) = m + mv2 + 2m   ①

三球系统水平方向动量守恒,有:

mv1 + mvsinθ= 2mv2         ②

左边杆子不形变,有:

v1cos45°= vcos(45°-θ)      ③

右边杆子不形变,有:

vcos(45°+θ) = v2cos45°     ④

四个方程,解四个未知量(v1 、v2 、v和θ),是可行的。推荐解方程的步骤如下--

1、③、④两式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4

试题详情

物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1和m2的A、B两个有孔小球,串在杆上,且被长为L的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v2

模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去寻求。

(学生活动)A球的机械能是否守恒?B球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a、“微元法”判断两个WT的代数和为零;b、无非弹性碰撞,无摩擦,没有其它形式能的生成)?

由“拓展条件”可以判断,A、B系统机械能守恒,(设末态A球的瞬时速率为v1 )过程的方程为:

m2g =  +       ①

在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:

v1 = v/cos30°, v2 = v/sin30°

两式合并成:v1 = v2 tg30°= v2/   ②

解①、②两式,得:v2 =

试题详情

4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?

在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。

面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。

第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;

第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;

第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;

第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。

但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值--物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)

以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。

而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。

那么我们在解题中如何处理呢?这里给大家几点建议: 1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。

当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构--这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。

以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。

(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?

解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S 。(另解:求货物动能的增加和与皮带摩擦生热的总和。)

答:否。

(学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?

解:分析同上面的“第3例”。

答:否。

试题详情

3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?

试题详情

2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?

试题详情

在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。

1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?

试题详情

物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?

(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?

模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S = t 。为寻求时间t ,则要抓人和船的位移约束关系。

对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:

0 = MV + m(-v)

即:mv = MV

由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:

m = M                                  ①

设全程的时间为t ,乘入①式两边,得:mt = Mt

设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S     ②

受船长L的约束,s和S具有关系:s + S = L                  ③

解②、③可得:船的移动距离 S =L

(应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些--必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)

另解:质心运动定律

人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x = ),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。

(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?

解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。

答:h 。

(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。

解:水平方向动量守恒。解题过程从略。

答:(a-b)。

进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。

解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。

为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。

由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。

由“定式”,易得:

x = Rsinθ          ①

而由图知:y = Rcosθ         ②

不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:

 +  = 1

这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。

试题详情

物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?

模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。

设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1 第二过程获得的速度大小为V2

第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。

0 = Nm(-v) + MV1

得:V1 = v                   ①

第二过程,必须逐次考查铅球与车子(人)的作用。

第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1 。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:

0 = m(-v + u1) +(M +(N-1)m)u1

得:u1 =

第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2 。它们动量守恒方程为:

(M+(N-1)m)u1 = m(-v + u2) +(M+(N-2)m)u2

得:u2 =  +

第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3 。铅球对地的速度是(-v + u3)。它们动量守恒方程为:

(M+(N-2)m)u2 = m(-v + u3) +(M+(N-3)m)u3

得:u3 = +  +

以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:

V2 = uN =  +  +  + … +

即:V2 =                 ②

我们再将①式改写成:

V1 =                     ①′

不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1 > V2

结论:第一过程使车子获得的速度较大。

(学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?

解:第二过程结论和上面的模型完全相同,第一过程结论为V1 =  。

答:第二过程获得速度大。

试题详情


同步练习册答案