2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B.
1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法).
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法.
(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法.
6.在约束条件下,当时,目标函数
的最大值的变化范围是
A.[6,15] B.[7,15]
C.[6,8] D.[7,8]
§5.3 基本不等式的证明
5.某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?
4.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?
3.求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件
2.画出不等式组表示的平面区域
1.画出不等式-+2y-4<0表示的平面区域.
[例1] .画出不等式组表示的平面区域.
错解:如图(1)所示阴影部分即为不等式组表示的平面区域.
错因一是实虚线不清,二是部分不等式所表示的平面区域弄错了.
正解:如图(2)所示阴影部分即为不等式组表示的平面区域.
[例2] 已知1x-y2,且2x+y4,求4x-2y的范围.
错解:由于 1x-y2 ①,
2x+y4 ②,
①+② 得32x6 ③
①×(-1)+② 得:02y3 ④.
③×2+④×(-1)得. 34x-2y12
错因:可行域范围扩大了.
正解:线性约束条件是:
令z=4x-2y,
画出可行域如右图所示,
由得A点坐标(1.5,0.5)此时z=4×1.5-2×0.5=5.
由得B点坐标(3,1)此时z=4×3-2×1=10.
54x-2y10
[例3] 已知,求x2+y2的最值.
错解:不等式组表示的平面区域如右图所示ABC的内部(包括边界),
令z= x2+y2
由得A点坐标(4,1),
此时z=x2+y2=42+12=17,
由得B点坐标(-1,-6),
此时z=x2+y2=(-1)2+(-6)2=37,
由得C点坐标(-3,2),
此时z=x2+y2=(-3)2+22=13,
当时x2+y2取得最大值37,当时x2+y2取得最小值13.
错因:误将求可行域内的点到原点的距离的平方的最值误认为是求三点A、B、C到原点的距离的平方的最值.
正解:不等式组表示的平面区域如图所示ABC的内部(包括边界),
令z= x2+y2,则z即为点(x,y)到原点的距离的平方.
由得A点坐标(4,1),
此时z=x2+y2=42+12=17,
由得B点坐标(-1,-6),
此时z=x2+y2=(-1)2+(-6)2=37,
由得C点坐标(-3,2),
此时z=x2+y2=(-3)2+22=13,
而在原点处,,此时z=x2+y2=02+02=0,
当时x2+y2取得最大值37,当时x2+y2取得最小值0.
[例4]某家具厂有方木料90m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使得利润最大?
分析: 数据分析列表
|
书桌 |
书橱 |
资源限制 |
木料(m3) |
0.1 |
0.2 |
90 |
五合板(m2) |
2 |
1 |
600 |
利润(元/张) |
80 |
120 |
|
计划生产(张) |
x |
y |
|
设生产书桌x张,书橱y张,利润z元,则约束条件为
2x+y-600=0 A(100,400) x+2y-900=0 2x+3y=0 |
目标函数z=80x+120y
作出上可行域:
作出一组平行直线2x+3y=t, 此直线经过点A(100,400)时,即合理安排生产,生产书桌100张,书橱400张,有最大利润为
zmax=80×100+400×120=56000(元)
若只生产书桌,得0<x≤300,即最多生产300张书桌,利润为
z=80×300=24000(元)
若只生产书橱,得0<y≤450,即最多生产450张书橱,利润为z=120×450=54000(元)
答:略
[例5]某钢材厂要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表:
|
A规格 |
B规格 |
C规格 |
第一种钢板 |
1 |
2 |
1 |
第二种钢板 |
1 |
1 |
3 |
需求 |
12 |
15 |
27 |
每张钢板的面积,第一种为1m2,第二种为2 m2,今需要A、B、C三种规格的成品各12、15、27块,请你们为该厂计划一下,应该分别截这两种钢板多少张,可以得到所需的三种规格成品,而且使所用钢板的面积最小?只用第一种钢板行吗?
解:设需要截第一种钢板x张,第二种钢板y张,所用钢板面积为z m2,则
目标函数z=x+2y
作出可行域如图
作一组平行直线x+2y=t,
2x+y=15 x+y=12 x+3y=27 x+2y=0 |
由
可得交点,
但点不是可行域内的整点,其附近的整点(4,8)或(6,7)可都使z有最小值,
且zmin=4+2×8=20 或zmin=6+2×7=20
若只截第一种钢板,由上可知x≥27,所用钢板面积最少为z=27(m2);
若只截第二种钢板,则y≥15,最少需要钢板面积z=2×15=30(m2).
它们都比zmin大,因此都不行.
答:略
[例6]设,式中满足条件,求的最大值和最小值.
解:由引例可知:直线与所在直线平行,则由引例的解题过程知,
当与所在直线重合时最大,此时满足条件的最优解有无数多个,
当经过点时,对应最小,∴,.
说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;
2.线性目标函数的最值也可在可行域的边界上取得,即满足条件的最优解有无数多个.
5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com