例9.如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求:
(1)线框在下落阶段匀速进人磁场时的速度V2;
(2)线框在上升阶段刚离开磁场时的速度v1;
(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.
[解析](1)由于线框匀速进入磁场,则合力为零。有
mg=f+
解得:v=
(2)设线框离开磁场能上升的最大高度为h,则从刚离开磁场到刚落回磁场的过程中
(mg+f)×h=
(mg-f)×h=
解得:v1==
(3)在线框向上刚进入磁场到刚离开磁场的过程中,根据能量守恒定律可得
+f(b+a)
解得:Q=-f(b+a)
[备考提示]:题目考查了电磁感应现象、导体切割磁感线时的感应电动势、右手定则、动能定理和能量转化和守恒定律,而线框在磁场中的运动是典型的非匀变速直线运动,功能关系和能量守恒定律是解决该类问题的首选,备考复习中一定要突出能量在磁场问题中的应用。
例10.如下图甲所示,边长为和L的矩形线框
、
互相垂直,彼此绝缘,可绕中心轴
转动,将两线框的始端并在一起接到滑环C上,末端并在一起接到滑环D上,C、D彼此绝缘,外电路通过电刷跟C、D连接,线框处于磁铁和圆柱形铁芯之间的磁场中,磁场边缘中心的张角为450,如下图乙所示(图中的圆表示圆柱形铁芯,它使磁铁和铁芯之间的磁场沿半径方向,如图箭头方向所示).不论线框转到磁场中的什么位置,磁场的方向总是沿着线框平面.磁场中长为
的线框边所在处的磁感应强度大小恒为B,设线框
和
的电阻都是r,两个线框以角速度ω逆时针匀速转动,电阻R=2r。
(1)求线框转到如乙图所示位置时,感应电动势的大小;
(2)求转动过程中电阻R上电压的最大值;
(3)从线框
进入磁场开始计时,作出0-T(T是线框转动周期)的时间内通过R的电流
随时间变化的图象;
(4)求在外力驱动下两线框转
动一周所做的功.
解:(1)不管转到何位置,磁场
方向、速度方向都垂直,所以
有
(2)在线圈转动过程中,只有一个线框产生电动势,相当电源,另一线框与电阻R并联组成外电路,故
(3)流过R的电流
图象如图所示。 (
(4)每个线圈作为电源时产生的功率为`
根据能量守恒定律得两个线圈转动一周外力所做的功为
小结:电磁感应中的线圈问题为难度较大的综合问题,分析时注意(1)线圈是在无界还是有界磁场中运动及磁场的变化情况。(2)线圈在有界场中运动时应注意线圈各边进磁场、及出磁场的分析。(3)线圈问题常与感应电路的图象及能量问题综合应用。
[专题训练与高考预测]
1.如图所示,虚线所围区域内为一匀强磁场,闭合线圈abcd由静止开始运
动时,磁场对ab边的磁场力的方向向上,那么整个线圈应:( )
A.向右平动; B.向左平动;
C.向上平动; D.向下平动.
题型特点:在电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,也可用图象直观地表示出来.此问题可分为两类(1)由给定的电磁感应过程选出或画出相应的物理量的函数图像;(2)由给定的有关图像分析电磁感应过程,确定相关的物理量.
解题的基本方法:解决图象类问题的关键是分析磁通量的变化是否均匀,从而判断感应电动势(电流)或安培力的大小是否恒定,然后运用楞次定律或左手定则判断它们的方向,分析出相关物理量之间的函数关系,确定其大小和方向及在坐标在中的范围
例7.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电
流的正方向如图24所示,当磁场的
磁感应强度B随时间t如图变化时,
在图中正确表示线圈感应电动势E
变化的是( )
[解析]:在第1s内,由楞次定律可判定电流为正,其产生的感应电动势E1=,在第2s和第3s内,磁场B不变化,线圈中无感应电流,在第4s和第5s内,B减小,由楞次定律可判定,其电流为负,产生的感应电动势E1=
,由于ΔB1=ΔB2,Δt2=2Δt1,故E1=2E2,由此可知,A选项正确.
小结:考查了电磁感应现象中对图象问题的分析,要正确理解图象问题,必须能根据图象的定义把图象反映的规律对应到实际过程中去,又能根据对实际过程抽象对应到图象中去,最终根据实际过程的物理规律判断.
例8.如图甲所示,由均匀电阻丝做成的正方形线框abcd的电阻为R,ab=bc=cd=da=l,现将线框以与ab垂直的速度v匀速穿过一宽度为2l、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与边界平行,令线框的cd边刚与磁场左边界重合时t=0,电流沿abcda流动的方向为正.
(1)求此过程中线框产生的焦耳热;
(2)在图乙中画出线框中感应电流随时间变化的图象;
(3)在图丙中画出线框中a、b两点间电势差Uab随时间t变化的图象.
解:(1)ab或cd切割磁感线所产生的感应电动势为
,对应的感应电流为
,ab或cd所受的安培
.外力所做的功为W=
,由能的转化和守恒定律可知,线框匀速拉出过程中所产生的焦耳热应与外力所做的功相等,即Q=W=
。
(2) 今,画出的图象分为三段,如图所示:
t=0-;
t=-
;
t=-
。
(3)今U0 =Blv, 画出的图象分为三段,如图所示:
t=0-
;
t=-
;
t=-
例6. 如图所示,平行且足够长的两条光滑金属导轨,相距
0.5m,与水平面夹角为30°,不电阻,广阔的匀强磁场垂
直穿过导轨平面,磁感应强度B=0.4T,垂直导轨放置两
金属棒ab和cd,长度均为0.5m,电阻均为0.1Ω,质量
分别为0.1 kg和0.2 kg,两金属棒与金属导轨接触良好且
可沿导轨自由滑动.现ab棒在外力作用下,以恒定速度
v=1.5m/s沿着导轨向上滑动,cd棒则由静止释放,试
求: (取g=10m/s2)
(1)金属棒ab产生的感应电动势;
(2)闭合回路中的最小电流和最大电流;
(3)金属棒cd的最终速度.
解:(1)
(2)刚释放cd棒时,
cd棒受到安培力为: cd棒受到的重力为: Gcd=mg sin30º= 1N ;
;cd棒沿导轨向下加速滑动,既abcd闭合回路的
;电流也将增大,所以最小电流为:
;
当cd棒的速度达到最大时,回路的电流最大,此时cd棒的加速度为零。
由
(3)
由
例5. 平行轨道PQ、MN两端各接一个阻值R1=R2 =8 Ω的电热丝,轨道间距L=1 m,轨道很长,本身电阻不计,轨道间磁场按如图所示的规律分布,其中每段垂直纸面向里和向外的磁场区域宽度为2 cm,磁感应强度的大小均为B=1 T,每段无磁场的区域宽度为1 cm,导体棒ab本身电阻r=1Ω,与轨道接触良好,现让ab以v=10 m/s的速度向右匀速运动.求:
(1)当ab处在磁场区域时,ab中的电流为多大?ab两端的电压为多大?ab所受磁场力为多大?
(2)整个过程中,通过ab的电流是否是交变电流?若是,则其有效值为多大?并画出通过ab的电流随时间的变化图象.
解:(1)感应电动势E=BLv=10 V,
ab中的电流I= =2 A,
ab两端的电压为U=IR12=8 V,
ab所受的安培力为F=BIL=2 N,方向向左.
(2)是交变电流,ab中交流电的周期T=2+
2
=0.
006 s,由交流电有效值的定义,可得I2R(2
)=
2RT,即
。
通过ab的电流随时间变化图象如图所示.
例3.如图所示,在匀强磁场中固定放置一根串接一电阻
R的直角形金属导轨aoB(在纸面内),磁场方向垂
直纸面朝里,另有两根金属导轨c、d分别平行于oa、oB放置.保持导轨之间接触良好,
金属导轨的电阻不计.现经历以下四个过程:①以速
率V移动d,使它与oB的距离增大一倍;②再以速
率V移动c,使它与oa的距离减小一半;③然后,
再以速率2V移动c,使它回到原处;④最后以速率
2V移动d,使它也回到原处.设上述四个过程中通过
电阻R的电量的大小依次为Q1、Q2、Q3和Q4,则
A. Q1=Q2=Q3=Q4 B. Q1=Q2=2Q3=2Q4
C. 2Q1=2Q2=Q3=Q4 D. Q1≠Q2=Q3≠Q4
[解析]:设开始导轨d与OB的距离为x1,导轨c
与Oa的距离为x2,由法拉第电磁感应定律知,移动
c或d时产生的感应电动势: E==
通过导体R的电量为:Q=I=
Δt=
由上式可知,通过导体R的电量与导体d或c移动的速度无关,由于B与R为定值,其电量取决于所围成面积的变化.
①若导轨d与OB距离增大一倍,即由x1变2 x1,则所围成的面积增大了ΔS1=x1·x2;
②若导轨c再与Oa距离减小一半,即由x2变为,则所围成的面积又减小了ΔS2=
·2x1=x1·x2;
③若导轨c再回到原处,此过程面积的变化为ΔS3=ΔS2=·2x1=x1·x2;
④最后导轨d又回到原处,此过程面积的变化为ΔS4=x1·x2;
由于ΔS1=ΔS2=ΔS3=ΔS4,则通过电阻R的电量是相等的,即Q1=Q2=Q3=Q4. 所以选(A)。
小结:本题难度较大,要求考生对法拉第电磁感应定律熟练掌握,明确电量与导轨运动速度无关,而取决于磁通量的变化,同时结合图形去分析物理过程,考查了考生综合分析问题的能力.
例4.如图所示,两根足够长的固定平行金属光滑导轨位于同一水平
面,导轨上横放着两根相同的导体棒ab、cd与导轨构成矩形回
路。导体棒的两端连接着处于压缩状态的两根轻质弹簧,两棒
的中间用细线绑住,它们的电阻均为R,回路上其余部分的电阻
不计。在导轨平面内两导轨间有一竖直向下的匀强磁场。开始
时,导体棒处于静止状态。剪断细线后,导体棒在运动过程中 (A
D)
A.回路中有感应电动势
B.两根导体棒所受安培力的方向相同
C.两根导体棒和弹簧构成的系统动量守恒,机械能守恒
D.两根导体棒和弹簧构成的系统动量守恒,机械能不守恒
4.解决电磁感应中的电路问题,必须按题意画出等效电
路,其余问题为电路分析和闭合电路欧姆定律的应用.
例1.如图所示,两个电阻的阻值分别为R和2R,其余电阻不
计,电容器的电容量为C,匀强磁场的磁感应强度为B,
方向垂直纸面向里,金属棒ab、cd 的长度均为l ,当
棒ab以速度v 向左切割磁感应线运动时,当棒cd以速
度2v 向右切割磁感应线运动时,电容 C的电量为多
大? 哪一个极板带正电?
解:画出等效电路如图所示:棒ab产生的感应电动势为:
E1=Bl V
棒ab产生的感应电动势为: E2=2Bl
V
电容器C充电后断路,Uef = - Bl v /3,
Ucd= E2=2Bl V
U C= Uce=7 BL V /3
Q=C UC=7 CBl V /3
右板带正电。
例2. 如图所示,金属圆环的半径为R,电阻的值为2R.金
属杆oa一端可绕环的圆心O旋转,另一端a搁在环
上,电阻值为R.另一金属杆ob一端固定在O点,另一端B固
定在环上,电阻值也是R.加一个垂直圆环的磁感强度为B的
匀强磁场,并使oa杆以角速度ω匀速旋转.如果所有触点接触
良好,ob不影响oa的转动,求流过oa的电流的范围.
解析:Oa 旋转时产生感生电动势,
大小为:,E=1/2×Bωr2
当Oa到最高点时,等效电路如图甲所示:
Imin
=E/2.5R= Bωr2 /5R
当Oa与Ob重合时,环的电阻为0,等效电路如图
16乙示:
Imax =E/2R= Bωr2 /4R
∴ Bωr2 /5R<I < Bωr2 /4R
3.产生感应电动势的导体跟用电器连接,可以对用电器供电,由闭合电路欧姆定律求解各种问题.
题型特点:闭合电路中磁通量发生变化或有部分导体在做切割磁感线运动,在回路中将产生感应电动势,回路中将有感应电流。从而讨论相关电流、电压、电功等问题。其中包含电磁感应与力学问题、电磁感应与能量问题。
解题基本思路:1.产生感应电动势的导体相当于一个电源,感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于电源的内阻.
2.电源内部电流的方向是从负极流向正极,即从低电势流向高电势.
7、实验原理及迁移
《大纲》要求:能理解实验原理和方法,能控制实验条件,能灵活地运用已学过的物理理论、实验方法和实验仪器去处理问题。
这就要求学生能将学过的物理知识应用到实验中,能够理解改编类实验的原理,在需要时能根据给出的仪器设计实验。这是考查的重点。
例14、(06年全国卷Ⅱ)一块玻璃砖用两个相互平行的表面,其中一个表面是镀银的(光线不能通过表面)。现要测定此玻璃的析射率。给定的器材还有:白纸、铅笔、大头针4枚(P1、P2、P3、P4)、带有刻度的直角三角板、量角器。实验时,先将玻璃砖放到白纸上,使上述两个相互平行的表面与纸面垂直。在纸上画出直线aa’和bb’,aa’表示镀银的玻璃表面,bb’表示另一表面,如图所示。然后,在白纸上竖直插上两枚大头针P1、P2(位置如图)。用P1、P2的连线表示入射光线。
(1)为了测量折射率,应如何正确使用大头针P3、P4?
(2)试在题图中标出P3、P4的位置。然后,移去玻璃砖与大头针。试在题图中通过作图的方法标出光线从空气到玻璃中的入射角θ1与折射角θ2.简要写出作图步骤。
.
(3)写出θ1、θ2表示的折射率公式为n= .
解析:本实验是根据教材《测定玻璃的折射率》实验改编的,它考查考生实验对实验原理的理解及迁移能力。认真读题,比较本题与教材中的不同。
答案:ⅰ.在bb′一侧观察P1、P2(经bb′折射,aa′反射,再经bb′折射后)的像,在适当的位置插上P3,使得P3与P1、P2的像在一条直线上,即让P3挡住P1、P2的像;再插上P4,让它挡住P2(或P1)的像和P3。P3、P4的位置如图。
ⅱ.①过P1、P2作直线与bb′交于O;
②过P3、P4作直线与bb′交于O′;
③利用刻度尺找到OO′的中点M;
④过O点作bb′的垂线CD,过M点作bb′的垂线与aa′相交与N,如图所示,连接ON;
⑤∠P1OD=θ1,∠CON=θ2。
ⅲ.。
同型题3(07全国卷1 22)碰撞的恢复系数的定义为c=
,其中v10和v20分别是碰撞前两物体的速度,v1和v2分别是碰撞后两物体的速度。弹性碰撞的恢复系数e=1,非弹性碰撞的e<1,某同学借用验证动量守恒定律的实验装置(如图所示)物质弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2,(他们之间的碰撞可近似视为弹性碰撞),且小球1的质量大于小球2的质量。
实验步骤如下:
安装实验装置,做好测量前的准备,并记下重垂线所指的位置O。
第一步,不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上。重复多次,用尽可能小的圆把小球的所有落点圈在里面,其圆心就是小球落点的平均位置。
第二步,把小球2放在斜槽前端边缘处的C点,计小球1从A点由静止滚下,使它们碰撞,重复多次,并使用与第一步同样的方法分别标出碰撞后两小球落点的平均位置.
第三步,用刻度尺分别测量三个落地点的平均位置离O点的距离,即线段OM、OP、ON的长度。在上述实验中,
①P点是 的平均位置,M点是 的平均位置,N点是 的平均位置。
②请写出本实验的原理
写出用测量表示的的恢复系数的表达式
③三个落地点距O点的距离OM、OP、ON与实验所用的小球质量是否有关?
6、实验误差的分析
(1)误差是指测量值与真实值的差异。
(2)误差可分:
①系统误差:系统误差的特点是在多次重复同一实验时,误差总是同样地偏大或偏小。
②偶然误差:偶然误差总是有时偏大,有时偏小,并且偏大和偏小的机会相同。减小偶然误差的方法,可以多进行几次测量,求出几次测量的数值的平均值。这个平均值比某一次测得的数值更接近于真实值。
(3)百分误差:真实值与测量值之差的绝对值与真实值之比:%。
例13(06天津)用半径相同的两小球A、B的碰撞验证动量守恒定律,实验装置示意如图,斜槽与水平槽圆滑连接。实验时先不放B球,使A球从斜槽上某一固定点 C由静止滚下,落到位于水平地面的记录纸上留下痕迹。再把B求静置于水平槽前端边缘处,让 A球仍从 C处由静止滚下,A球和 B球碰撞后分别落在记录纸上留下各自的痕迹。记录纸上的 O点是垂直所指的位置,若测得各落点痕迹到 O点的距离:OM=2.68cm,OP=8.62cm,ON=11.50cm,并知
A、B两球的质量比为 2:1,则未放
B球时 A球落地点是记录纸上的__ __ 点,系统碰撞前总动量 P与碰撞后总动量的百分误差
= %(结果保留一位有效数字)。
答案:M、N分别是碰后两球的落点的位置,P点是未发生碰撞时A球落点的位置;2 。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com