10.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与仓库到车站的距离成正比,如果在距离车站10 km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站 ( )
A.5 km处 B.4 km处 C.3 km处 D.2 km处
解析:由题意可设y1=,y2=k2x,
∴k1=xy1,k2=,
把x=10,y1=2与x=10,y2=8分别代入上式得k1=20,k2=0.8,
∴y1=,y2=0.8x(x为仓库与车站距离),
费用之和y=y1+y2=0.8x+≥2 =8,
当且仅当0.8x=,即x=5时等号成立.
答案:A
第Ⅱ卷 (非选择题,共100分)
9.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,
则+++
等于 ( )
A.36 B.24 C.18 D.12
解析:由f(p+q)=f(p)f(q),
令p=q=n,得f2(n)=f(2n).
原式=+++
=2f(1)+++
=8f(1)=24.
答案:B
8.(2010·淄博模拟)若f(a)=(3m-1)a+b-2m,当m∈[0,1]时f(a)≤1恒成立,则a+b的最大值为 ( )
A. B. C. D.
解析:设g(m)=f(a)=(3a-2)m+b-a,由于当m∈[0,1]时
g(m)=f(a)=(3a-2)m+b-a≤1恒成立,于是
满足此不等式组的点(a,b)构成图中的阴影部分,
其中A(),设a+b=t,显然直线a+b=t过点
A时,t取得最大值.
答案:D
7.已知函数f(x)=ax2+bx+c的图象过点(-1,3)和(1,1),若0<c<1,则实数a的取值范围是 ( )
A.[2,3] B.[1,3] C.(1,2) D.(1,3)
解析:由题意:得b=-1,∴a+c=2.
又0<c<1,∴0<2-a<1,∴1<a<2.
答案:C
6.已知实数a,b,则“ab≥2”是“a2+b2≥4”的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:当ab≥2时,a2+b2≥2ab≥4,故充分性成立,而a2+b2≥4时,当a=-1,b=3时成立,但ab=-3<2,显然ab≥2不成立,故必要性不成立.
答案:A
5.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;
②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;
③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.
其中类比得到的结论正确的个数是 ( )
A.0 B.1 C.2 D.3
解析:①②是正确的,③是错误的,因为复数不能比较大小,如a=5+6i,b=4+6i,虽然满足a-b=1>0,但复数a与b不能比较大小.
答案:C
4.若集合A={x||2x-1|<3},B={x|<0},则A∩B是 ( )
A.{x|-1<x<-或2<x<3} B.{x|2<x<3}
C.{x|-<x<2} D.{x|-1<x<-}
解析:∵|2x-1|<3,∴-3<2x-1<3.∴-1<x<2.
又∵<0,∴(2x+1)(x-3)>0,
∴x>3或x<-.∴A∩B={x|-1<x<-}.
答案:D
3.已知函数f(x)=,若f(x)≥1,则x的取值范围是 ( )
A.(-∞,-1] B.[1,+∞)
C.(-∞,0]∪[1,+∞) D.(-∞,-1]∪[1,+∞)
解析:将原不等式转化为:或,从而得x≥1或x≤-1.
答案:D
2.下列命题中的真命题是 ( )
A.若a>b,c>d,则ac>bd B.若|a|>b,则a2>b2
C.若a>b,则a2>b2 D.若a>|b|,则a2>b2
解析:由a>|b|,可得a>|b|≥0⇒a2>b2.
答案:D
1.不等式(x+1)≥0的解集是 ( )
A.{x|x>1} B.{x|x≥1}
C.{x|x≥1或x=-1} D.{x|x≥-1或x=1}
解析:∵≥0,∴x≥1.
同时x+1≥0,即x≥-1.∴x≥1.
答案:B
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com