19.已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=.
(1)若f(-2)=0,求F(x)的表达式;
(2)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?
解:(1)由f(-2)=0,4a+4=0⇒a=-1,
∴F(x)=
(2)∵,∴m,n一正一负.
不妨设m>0且n<0,则m>-n>0,
F(m)+F(n)=f(m)-f(n)=am2+4-(an2+4)
=a(m2-n2),
当a>0时,F(m)+F(n)能大于0,
当a<0时,F(m)+F(n)不能大于0.
18. (2010·吉林模拟)沪杭高速公路全长166千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶到杭州.已知该汽车每小时的运输成本y(以元为单元)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为200元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?
解:(1)依题意得:y=(200+0.02v2)×
=166(0.02v+)(60≤v≤120).
(2)y=166(0.02v+)≥166×2
=664(元)
当且仅当0.02v=即v=100千米/时时取等号.
答:当速度为100千米/时时,最小的运输成本为664元.
17.若a1>0,a1≠1,an+1=(n=1,2,…)
(1)求证:an+1≠an;
(2)令a1=,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an.
解:(1)证明:(采用反证法).若an+1=an,
即=an,解得an=0,1.
从而an=an-1=…=a2=a1=0,1,与题设a1>0,a1≠1相矛盾,
故an+1≠an成立.
(2)a1=、a2=、a3=、a4=、a5=,an=,
n∈N*.
16.已知f(x)=-3x2+a(6-a)x+b.
(1)解关于a的不等式f(1)>0;
(2)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值.
解:(1)f(1)=-3+a(6-a)+b=-a2+6a+b-3,
∵f(1)>0,∴a2-6a+3-b<0.
Δ=24+4b,当Δ≤0
即b≤-6时,f(1)>0的解集为∅;
当b>-6时,3-<a<3+,
∴f(1)>0的解集为{a|3-<a<3+}.
(2)∵不等式-3x2+a(6-a)x+b>0的解集为(-1,3),
∴解之,得
15.已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则下列说法正确的是________.
①2a-3b+1>0;
②a≠0时,有最小值,无最大值;
③∃M∈R+,使>M恒成立;
④当a>0且a≠1,b>0时,则的取值范围为(-∞,-)∪(,+∞).
解析:由已知(2a-3b+1)(2-0+1)<0,
即2a-3b+1<0,∴①错;
当a>0时,由3b >2a+1,
可得>+,
∴不存在最小值,∴②错;
表示为(a,b)与(0,0)两点间的距离,由线性规划知识可得:
>=恒成立,
∴③正确;
表示为(a,b)和(1,0)两点的斜率.
由线性规划知识可知④正确.
答案:③④
14.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为________元.
解析:设需租赁甲种设备x台,乙种设备y台,
则
目标函数为z=200x+300y.
作出其可行域,易知当x=4,y=5时,z=200x+300y有最小值2300元.
答案:2300
13.关于x的不等式ax2+4x-1≥-2x2-a恒成立,那么实数a的取值范围是________.
解析:不等式ax2+4x-1≥-2x2-a
可化为(a+2)x2+4x+a-1≥0,
当a+2=0,即a=-2时,不恒成立,不合题意.
当a+2≠0时,要使不等式恒成立,
需解得a≥2.
所以a的取值范围为[2,+∞).
答案:[2,+∞)
12.关于x的不等式x2+(a+1)x+ab>0的解集是{x|x<-1或x>4},则实数a、b的值分别为________.
解析:由不等式的解集为{x|x<-1或x>4}可得,-1,4是方程x2+(a+1)x+ab=0的两根,
∴,解得a=-4,b=1.
答案:-4,1
11.不等式组,所表示的平面区域的面积等于________.
解析:不等式组表示的平面区域如图所示,由
得交点A的坐标为(1,1).又B、C两点的坐标为(0,4),
(0,).故S△ABC=(4-)×1=.
答案:
10.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与仓库到车站的距离成正比,如果在距离车站10 km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站 ( )
A.5 km处 B.4 km处 C.3 km处 D.2 km处
解析:由题意可设y1=,y2=k2x,
∴k1=xy1,k2=,
把x=10,y1=2与x=10,y2=8分别代入上式得k1=20,k2=0.8,
∴y1=,y2=0.8x(x为仓库与车站距离),
费用之和y=y1+y2=0.8x+≥2 =8,
当且仅当0.8x=,即x=5时等号成立.
答案:A
第Ⅱ卷 (非选择题,共100分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com