原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.
G=mr,由此可得:M=;ρ===(R为行星的半径)
由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M.若知道行星的半径则可得行星的密度
规律方法 1、万有引力定律的基本应用
[例1]如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?
分析 把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.
解 完整的均质球体对球外质点m的引力
这个引力可以看成是:m挖去球穴后的剩余部分对质点的引力F1与半径为R/2的小球对质点的引力F2之和,即F=F1+F2.因半径为R/2的小球质量M/为,
则
所以挖去球穴后的剩余部分对球外质点m的引力
说明 (1)有部分同学认为,如果先设法求出挖去球穴后的重心位置,然后把剩余部分的质量集中于这个重心上,应用万有引力公式求解.这是不正确的.万有引力存在于宇宙间任何两个物体之间,但计算万有引力的简单公式却只能适用于两个质点或均匀球体,挖去球穴后的剩余部分已不再是均匀球了,不能直接使用这个公式计算引力.
(2)如果题中的球穴挖在大球的正中央,根据同样道理可得剩余部分对球外质点m的引力
上式表明,一个均质球壳对球外质点的引力跟把球壳的质量(7M/8)集中于球心时对质点的引力一样.
[例2]某物体在地面上受到的重力为160 N,将它放置在卫星中,在卫星以加速度a=½g随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N时,求此时卫星距地球表面有多远?(地球半径R=6.4×103km,g取10m/s2)
解析:设此时火箭上升到离地球表面的高度为h,火箭上物体受到的支持力为N,物体受到的重力为mg/,据牛顿第二定律.N-mg/=ma……①
在h高处mg/=……② 在地球表面处mg=……③
把②③代入①得 ∴=1.92×104 km.
说明:在本问题中,牢记基本思路,一是万有引力提供向心力,二是重力约等于万有引力.
[例3]有人利用安装在气球载人舱内的单摆来确定气球的高度。已知该单摆在海平面处的周期是T0。当气球停在某一高度时,测得该单摆周期为T。求该气球此时离海平面的高度h。把地球看作质量均匀分布的半径为R的球体。
解析:根据单摆周期公式:其中l是单摆长度,g0和g分别是两地点的重力加速度。根据万有引力公式得其中G是引力常数,M是地球质量。
由以上各式解得
[例4]登月火箭关闭发动机在离月球表面112 km的空中沿圆形轨道运动,周期是120.5 min,月球的半径是1740 km,根据这组数据计算月球的质量和平均密度.
解析:设月球半径为R,月球质量为M,月球密度为ρ,登月火箭轨道离月球表面为h,运动周期为T,火箭质量为m,由GMm/r2=m4π2r/T2得M=4π2r3/(GT2),ρ=M/V,其中V=4π2R3/3,则F向=mω2r=m4π2(R+h)/T2,F引=GMm/(R+h)2,火箭沿轨道运行时有F引=F向,即GMm/(R+h)2= m4π2(R+h)/T2
故M=4π2(R+h)3/(GT2)2=7.2×1022kg,ρ=3M/4πR3=3.26×103kg/m3
[例5]已知火星上大气压是地球的1/200.火星直径约为球直径的一半,地球平均密度ρ地=5.5×103kg/m3,火星平均密度ρ火=4×103kg/m3.试求火星上大气质量与地球大气质量之比.
分析 包围天体的大气被吸向天体的力.就是作用在整个天体表面(把它看成平面时)的大气压力.利用万有引力算出火星上和地球上的重力加速度之比,即可算出它们的大气质量之比.
解 设火星和地球上的大气质量、重力加速度分别为m火、g火、m地、g地,火星和地球上的大气压分别为据万有引力公式,火星和地球上的重力加速度分别为
综合上述三式得
[例6]一个宇航员在半径为R的星球上以初速度v0竖直上抛一物体,经ts后物体落回宇航员手中.为了使沿星球表面抛出的物体不再落回星球表面,抛出时的速度至少为多少?
解析:物体抛出后,受恒定的星球引力作用,做匀减速运动,遵循着在地面上竖直上抛时的同样规律.设星球对物体产生的“重力加速度”为gx,则由竖直上抛运动的公式得为使物体抛出后不再落回星球表面,应使它所受到的星球引力正好等于物体所需的向心力,即成为卫星发射了出去。,这个速度即是这个星球上发射卫星的第一宇宙速度。
[例7]在“勇气”号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。
假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计大气阻力。已知火星的一个卫星的圆轨道半径为r,周期为T。火星可视为半径为r0的均匀球体。
分析:第一次落到火星表面弹起在竖直方向相当于竖直上抛,在最高点由于只有水平速度故将做平抛运动,第二次落到火星表面时速度应按平抛处理。无论是竖直上抛还是平抛的计算,均要知道火星表面的重力加速度g/。利用火星的一个卫星的相关数据可以求出g/。
解:设火星的一个卫星质量为m,任一物体的质量为m/,在火星表面的重力加速度为g/,火星的质量为M。
任一物体在火星表面有:……① 火星的卫星应满足:……②
第一次落到火星表面弹起在竖直方向满足:v12=2g/h……③
第二次落到火星表面时速度应按平抛处理:……④
由以上4式可解得
2、讨论天体运动规律的基本思路
基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。
[例8]2000年1月26日我国发射了一颗同步卫星,其定点位置与东经980的经线在同一平面内.若把甘肃省嘉峪关处的经度和纬度近似为东经980和北纬α=400,已知地球半径R、地球自转周期T,地球表面重力加速度g(视为常数)和光速c,试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).
解析:设m为卫星质量,M为地球质量,r为卫星到地球中心的距离,ω为卫星绕地心转动的角速度.由万有引力定律和牛顿定律有,式中G为万有引力恒量,因同步卫星绕地心转动的角速度ω与地球自转的角速度相等,有ω=2π/T;因,得GM=gR2.
设嘉峪关到同步卫星的距离为L,如图所示,由余弦定律得:
所求的时间为t=L/c.
由以上各式得
[例9]在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为L,质量分别为M1和M2,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线速度。
解析:因为双星受到同样大小的万有引力作用,且保持距离不变,绕同一圆心做匀速圆周运动,所以具有周期、频率和角速度均相同;而轨道半径、线速度不同的特点。
(1)根据万有引力定律
可得:
(2)同理,还有
所以,周期为
(3)根据线速度公式,
[例10]兴趣小组成员共同协作,完成了下面的两个实验:①当飞船停留在距X星球一定高度的P点时,正对着X星球发射一个激光脉冲,经时间t1后收到反射回来的信号,此时观察X星球的视角为θ,如图所示.②当飞船在X星球表面着陆后,把一个弹射器固定在星球表面上,竖直向上弹射一个小球,经测定小球从弹射到落回的时间为t2.
已知用上述弹射器在地球上做同样实验时,小球在空中运动的时间为t,又已知地球表面重力加速度为g,万有引力常量为G,光速为c,地球和X星球的自转以及它们对物体的大气阻力均可不计,试根据以上信息,求:
(1)X星球的半径R;(2)X星球的质量M;(3)X星球的第一宇宙速度v;
(4)在X星球发射的卫星的最小周期T.
解析:(1)由题设中图示可知:
(R+½ct1)sinθ=R,∴R=
(2)在X星球上以v0竖直上抛t2=,在地球上以v0竖直上抛:t=,,又由,
(3)mg'=
(4)当v达第一宇宙速度时,有最小周期T.
[例11]天体运动的演变猜想。在研究宇宙发展演变的理论中,有一种说法叫做“宇宙膨胀说”,认为引力常量在慢慢减小。根据这种理论,试分析现在太阳系中地球的公转轨道平径、周期、速率与很久很久以前相比变化的情况。
[解析]地球在半径为R的圆形轨道上以速率v运动的过程中,引力常数G减小了一个微小量,万有
引力公式。由于太阳质量M,地球质量m,r均未改变,万有引力F引必然随之减小,并小于公转轨道上该点所需的向心力(速度不能突变)。由于惯性,地球将做离心运动,即向外偏离太阳,半径r增大。地球在远离太阳的过程中,在太阳引力的作用下引起速率v减小,运转周期增大。由此可以判断,在很久很久以前,太阳系中地球的公转轨道半径比现在小,周期比现在小,速率比现在大。
由引力常量G在慢慢减小的前提可以分析出太阳系中地球的公转轨道半径在慢慢变大,表明宇宙在不断地膨胀。
试题展示
散 专题:人造天体的运动
知识简析 一、卫星的绕行角速度、周期与高度的关系
(1)由,得,∴当h↑,v↓
(2)由G=mω2(r+h),得ω=,∴当h↑,ω↓
(3)由G,得T= ∴当h↑,T↑
设天体表面重力加速度为g,天体半径为R,由mg=得g=,由此推得两个不同天体表面重力加速度的关系为
重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G, g=GM/r2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即gh=GM/(r+h)2,比较得gh=()2·g
在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有
F=F向+m2g,
所以m2g=F一F向=G-m2Rω自2
因地球目转角速度很小G» m2Rω自2,所以m2g= G
假设地球自转加快,即ω自变大,由m2g=G-m2Rω自2知物体的重力将变小,当G=m2Rω自2时,m2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=,比现在地球自转角速度要大得多.
(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.
(2)公式:F=G,其中,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.
注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G的物理意义是:G在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.
4、圆周运动中实例分析
[例8]如图所示,是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面.若女运动员做圆锥摆运动时和竖直方向的夹角为B,女运动员的质量为m,转动过程中女运动员的重心做匀速圆周运动的半径为r,求这时男运动员对女运动员的拉力大小及两人转动的角速度
解析:依圆锥摆原理,男运动员对女运动员的拉力F=mg/cosθ,女运动员做圆周运动的向心力F向=mgtanθ,则由动力学方程得mgtanθ=mω2r,得
[例9]如图所示为一实验小车中利用光脉冲测量车速和行程的装置的示意图,A为光源,B为电接收器,A、B均固定在车身上,C为小车的车轮,D为与C同轴相连的齿轮.车轮转动时,A发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B接收并转换成电信号,由电子电路记录和显示.若实验显示单位时间内的脉冲数为n,累计脉冲数为N, 则要测出小车的速度和行程还必须测量的物理量或数据是 ;车速度的表达式为v= ;行程的表达式为s=
解析:由题可知,每经过一个间隙,转化成一个脉冲信号被接收到,每个间隙转动的时间t=1/n。
设一周有P个齿轮,则有P个间隙,周期T=Pt=P/n。据v=2πR/T=2πnR/P,
所以必须测量车轮的半径R和齿数P,当肪冲总数为N,则经过的时间t0=Nt=N/n.
所以位移
[例10]若近似认为月球绕地公转与地球绕日公转的轨道在同一平面内,且均为正圆,又知这两种转动同向,如图所示,月相变化的周期为29.5 天(图示是相继两次满月时,月、地、日相对位置的示意图)。求:月球绕地球转一周所用的时间T(因月球总是一面朝向地球,故T恰是月球自转周期)。(提示:可借鉴恒星日、太阳日的解释方法)。
3、圆周运动与其它运动的结合
圆周运动和其他运动相结合,要注意寻找这两种运动的结合点:如位移关系、速度关系、时间关系等.还要注意圆周运动的特点:如具有一定的周期性等.
[例5]如图所示,M,N是两个共轴圆筒的横截面,外筒半径为R,内筒半径比R小很多,可以忽略不计。简的两端是封闭的,两筒之间抽成真空,两筒以相同角速度。转其中心轴线(图中垂直于纸面)作匀速转动,设从M筒内部可以通过窄缝S(与M筒的轴线平行)不断地向外射出两种不同速率v1和v2的微粒,从S处射出时初速度方向都是沿筒的半径方向,微粒到达N筒后就附着在N筒上,如果R、v1和v2都不变,而ω取某一合适的值,则()
A.有可能使微粒落在N筒上的位置都在c处一条与S缝平行的窄条上
B.有可能使微粒落在N筒上的位置都在某一处如b处一条与S缝平行的窄条上
C.有可能使微粒落在N筒上的位置分别在某两处如b处和C处与S缝平行的窄条上
D.只要时间足够长,N筒上将到处落有微粒
解:微粒从M到N运动时间t=R/v,对应N筒转过角度θ=ωt=ωR/v, 即θ1=ωt=ωR/v1, θ2=ωt=ωR/v2, 只要θ1、θ2不是相差2π的整数倍,则落在两处,C项正确;若相差2π的整数倍,则落在一处,可能是a处,也可能是b处。A,B正确。故正确选项为ABC.
[例6]如图所示,穿过光滑水平平面中央小孔O的细线与平面上质量为m的小球P相连,手拉细线的另一端,让小球在水平面内以角速度ω1沿半径为a的圆周做匀速圆周运动。所有摩擦均不考虑。 求:
(1)这时细线上的张力多大?
(2)若突然松开手中的细线,经时间Δt再握紧细线,随后小球沿半径为b的圆周做匀速圆周运动。试问:Δt等于多大?这时的角速度ω2为多大?
分析:手松后,小球不受力,将做匀速直线运动,求时间必须明确位移。正确画出松手后到再拉紧期间小球的运动情况是解题的关键。求Wz要考虑到速度的分解:小球匀速直线运动速度要在瞬间变到沿圆周切向,实际的运动可看做沿绳的切向和垂直切向的两个运动同时进行,画出速度分解图,可求得半径为b的圆周运动的速度,进而求出ω2。
解:(1)绳的张力提供向心力:T=mω12a
(2)松手后小球由半径为a圆周运动到半径为b的圆周上,做的是匀速直线运动(如图所示)。
小球匀速直线运动速度要在瞬间变到沿圆周切向,实际的运动可看做沿绳的切向和垂直切向的两个运动同时进行,有v2=vsinθ=va/b,即
[例7]如图所示,位于竖直平面上的1/4圆轨道,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,最后落在地面上C点处,不计空气阻力,求:
(1)小球则运动到B点时,对轨道的压力多大?
(2)小球落地点C与B点水平距离S为多少?
(3)比值R/H为多少时,小球落地点C与B点水平距离S最远?该水平距离最大值是多少?
解析:(1)小球沿圆弧做圆周运动,在B点由牛顿第二定律有NB-mg=mv2/R ①
由A至B,机械能守恒,故有mgR=½mv2 ②
由此解出NB=3mg
(2)小球离B点后做平抛运动: 在竖立方向有:H-R=½gt2 ③ 水平方向有:S=vt ④
由②③④解出:s= ⑤
(3)由⑤式得s= ⑥
由⑥式可知当R=H/2时,s有最大值,且为smax=H
答案:NB=3mg,s=,smax=H
点评:对于比较复杂的问题,一定要注意分清物理过程,而分析物理过程的前提是通过分析物体的受力情况进行.
2.向心力的认识和来源
(1)向心力不是和重力、弹力、摩擦力相并列的一种类型的力,是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切不可在物体的相互作用力(重力、弹力、摩擦力、万有引力)以外再添加一个向心力.
(2)由于匀速圆周运动仅是速度方向变化而速度大小不变的运动,故只存在向心加速
度,物体受的外力的合力就是向心力。显然物体做匀速圆周运动的条件是:物体的合外力大小不变,方向始终与速度方向垂直且指向圆心。
(3)分析向心力来源的步骤是:首先确定研究对象运动的轨道平面和圆心的位置,然后分析圆周运动物体所受的力,作出受力图,最后找出这些力指向圆心方向的合外力就是向心力.例如,沿半球形碗的光滑内表面,一小球在水平面上做匀速圆周运动,如图小球做圆周运动的圆心在与小球同一水平面上的O/点,不在球心O,也不在弹力N所指的PO线上.这种分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。
(4)变速圆周运动向心力的来源:分析向心力来源的步骤同分析匀速圆周运动向心力来源的步骤相向.但要注意,
①一般情况下,变速圆周运动的向心力是合外为沿半径方向的分力提供.
②分析竖直面上变速圆周运动的向心力的来源时,通常有细绳和杆两种模型.
(5)当物体所受的合外力小于所需要提供的向心力时,即F向<时,物体做离心运动;当物体所受的合外力大于所需要的向心力,即F向>时,物体做向心运动。
[例4]飞行员从俯冲状态往上拉时,会发生黑机,第一次是因为血压降低,导致视网膜缺血,第二次是因为大脑缺血,问(1)血压为什么会降低?(2)血液在人体循环中。作用是什么?(3)为了使飞行这种情况,要在如图的仪器飞行员进行训练,飞行员坐在一个垂直平面做匀速圆周运动的舱内,要使飞行员受的加速度 a= 6g,则转速需为多少?(R=20m)。
[解析]:(1)当飞行员往上加速上升,血液处于超重状态,视重增大,心脏无法像平常一样运输血液,导致血压降低。
(2)血液在循环中所起作用为提供氧气、营养,带走代谢所产生的废物。
(3)由a向=v2/R可得 v===34.29(m/s)
2.正确地分析物体的受力情况,找出向心力.
规律方法 1.线速度、角速度、向心加速度大小的比较
在分析传动装置的各物理量时.要抓住不等量和相等量的关系.同轴的各点角速度ω和n相等,而线速度v=ωr与半径r成正比.在不考虑皮带打滑的情况下.传动皮带与皮带连接的两轮边缘的各点线速度大小相等,而角速度ω=v/r与半径r成反比.
[例1]对如图所示的皮带传动装置,下列说法中正确的是
(A)A轮带动B轮沿逆时针方向旋转.
(B)B轮带动A轮沿逆时针方向旋转.
(C)C轮带动D轮沿顺时针方向旋转.
(D)D轮带动C轮沿顺时针方向旋转.
答案:BD
[例2]如图所示,皮带传动装置转动后,皮带不打滑,则皮带轮上A、B、C三点的情况是( )
A.vA=vB,vB>vC; B.ωA=ωB,vB = vC
C.vA =vB,ωB=ωc ;D.ωA>ωB ,vB =vC
解析:A、B两点在轮子边缘上,它们的线速度等于皮带上各点的线速度,所以vA=vB;B、C两点在同一轮上,所以ωB=ωc,由V=ωr知vB>vC,ωA>ωB . 答案:AC
[例3]如图所示,直径为d的纸质圆筒,以角速度ω绕轴O高速运动,有一颗子弹沿直径穿过圆筒,若子弹穿过圆筒时间小于半个周期,在筒上先、后留下a、b两个弹孔,已知ao、bo间夹角为φ弧度,则子弹速度为
解析:子弹在a处进入筒后,沿直径匀速直线运动,经t=d/v时间打在圆筒上,在t时间内,圆筒转过的角度θ=ωt=π-φ,则d/v=(π-φ)/ω,v=dω/(π-φ)答案:dω/(π-φ)
1.灵活、正确地运用公式
ΣFn=man=mv2/r=mω2r=m4π2r/T2=m4π2fr ;
2.切线方向的分力:产生切线方向加速度而改变速度大小.
故利用公式求圆周上某一点的向心力和向心加速度的大小,必须用该点的瞬时速度值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com