0  397372  397380  397386  397390  397396  397398  397402  397408  397410  397416  397422  397426  397428  397432  397438  397440  397446  397450  397452  397456  397458  397462  397464  397466  397467  397468  397470  397471  397472  397474  397476  397480  397482  397486  397488  397492  397498  397500  397506  397510  397512  397516  397522  397528  397530  397536  397540  397542  397548  397552  397558  397566  447090 

2、机械能守恒定律的灵活运用

[例7]如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自已刚好能回到高处A 。求男演员落地点C 与O 点的水平距离s。已知男演员质量m1,和女演员质量m2之比=2,秋千的质量不计,秋千的摆长为R , C 点比O 点低5R。

解:设分离前男女演员在秋千最低点B 的速度为v0,由机械能守恒定律

(m1+m2)gR=½ (m1+m2)v02

设刚分离时男演员速度的大小为v1,方向与v0相同;女演员速度的大小为v2,方向与v0相反,由动量守恒,

(m1+m2)v0=m1v1-m2v2

分离后,男演员做平抛运动,设男演员从被推出到落在C点所需的

时间为t ,根据题给条件,由运动学规律4R=gt2   s=v1t

根据题给条件,女演员刚好回到A点,由机械能守恒定律,m2gR=m2v22

已知m1/m2=2,由以上各式可得  s=8R

[例8]如图5 -4 -5所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球.支架悬挂在0点,可绕过O点并与支架所在平面相垂直的固定轴转动.开始时OB与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是

   A. A球到达最低点时速度为零

   B. A球机械能减少量等于B球机械能增加量

   C. B球向左摆动所能达到的最高位置应高于A球开始运动时的高度

   D.当支架从左向右回摆时,A球一定能回到起始高度

解析:因A处小球质量大,所处的位置高,图中三角形框架处于不稳定状态,释放后支架就会向左摆动.摆动过程中只有小球受的重力做功,故系统的机械能守恒,选项B正确,D选项也正确.A球到达最低点时,若设支架边长是L. A球下落的高度便是L/2,有2mg·(L/2)的重力势能转化为支架的动能,因而此时A球速度不为零,选项A错.当A球到达最低点时有向左运动的速度,还要继续左摆,B球仍要继续上升,因此B球能达到的最高位置比A球的最高位置要高,C选项也正确.

试题展示

       功能问题的综合应用

知识简析  一、功能关系

试题详情

   机械能守恒定律反映的是物体初、末状态的机械能间关系,且守恒是有条件的,而动能定理揭示的是物体动能的变化跟引起这种变化的合外力的功间关系,既关心初末状态的动能,也必须认真分析对应这两个状态间经历的过程中做功情况.

规律方法   1、单个物体在变速运动中的机械能守恒问题

[例6]从某高处平抛一个物体,物体落地时速度方向与水平方向夹角为θ,取地面处重力势能为零,则物体落下高度与水平位移之比为      .抛出时动能与重力势能之比为        

解析:设平抛运动的时间为 t,则落地时,   gt=v0tanθ即 gt2=v0ttanθ

   所以 2h=stanθ所以h/s=tanθ/2

   由于落地的速度v=v0/cosθ   又因为½m v02十mgh=½mv2

   所以mgh=½m v02/cos2θ-½mv02   所以½mv02/mgh=cot2θ

 [例7]如图所示,一个光滑的水平轨道AB与光滑的圆轨道BCD连接,其中图轨道在竖直平面内,半径为R,B为最低点,D为最高点.一个质量为m的小球以初速度v0沿AB运动,刚好能通过最高点D,则(      )

  A.小球质量越大,所需初速度v0越大

  B.圆轨道半径越大,所需初速度v0越大

  C.初速度v0与小球质量m、轨道半径R无关

  D。小球质量m和轨道半径R同时增大,有可能不用增大初速度v0

解析:球通过最高点的最小速度为v,有mg=mv2/R,v=

这是刚好通过最高点的条件,根据机械能守恒,在最低点的速度v0应满足

   ½m v02=mg2R+½mv2,v0=   答案:B

2、系统机械能守恒问题

[例8]如图,斜面与半径R=2.5m的竖直半圆组成光滑轨道,一个小球从A点斜向上抛,并在半圆最高点D水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置.

解析:小球从A到D的逆运动为平抛运动,由机械能守恒,平抛初速度vD为mgh-mg2R=½mvD2;

所以A到D的水平距离为

由机械能守恒得A点的速度v0为mgh=½mv02;

由于平抛运动的水平速度不变,则VD=V0cosθ,所以,仰角为

[例9]如图所示,总长为L的光滑匀质的铁链,跨过一光滑的轻质小定滑轮,开始时底端相齐,当略有扰动时,某一端下落,则铁链刚脱离滑轮的瞬间,其速度多大?

解析:铁链的一端上升,一端下落是变质量问题,利用牛顿定律求解比较麻烦,也超出了中学物理大纲的要求.但由题目的叙述可知铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能与其他形式的能转化,则机械能守恒,这个题目我们用机械能守恒定律的总量不变表达式E2=El,和增量表达式ΔEP=一ΔEK分别给出解答,以利于同学分析比较掌握其各自的特点.

(1)设铁链单位长度的质量为P,且选铁链的初态的重心位置所在水平面为参考面,则初态E1=0

滑离滑轮时为终态,重心离参考面距离L/4,EP/=-PLgL/4

Ek2=½Lv2即终态E2=-PLgL/4+½PLv2

由机械能守恒定律得E2= E1有   -PLgL/4+½PLv2=0,所以v=

(2)利用ΔEP=-ΔEK,求解:初态至终态重力势能减少,重心下降L/4,重力势能减少-ΔEP= PLgL/4,动能增量ΔEK=½PLv2,所以v=

   点评(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位里则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.

   (2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为一半铁链至另一半下端时重力势能的减少,然后利用ΔEP=-ΔEK求解,留给同学们思考.

[例10]一根细绳不可伸长,通过定滑轮,两端系有质量为M和m的小球,且M=2m,开始时用手握住M,使M与离地高度均为h并处于静止状态.求:(1)当M由静止释放下落h高时的速度.(2)设M落地即静止运动,求m离地的最大高度。(h远小于半绳长,绳与滑轮质量及各种摩擦均不计)

解:在M落地之前,系统机械能守恒(M-m)gh=½(M+m)v2,

M落地之后,m做竖直上抛运动,机械能守恒.有: ½mv2=mgh/;h/=h/3

离地的最大高度为:H=2h+h/=7h/3

试题展示

       机械能守恒定律的应用

知识简析一、应用机械能守恒定律解题的基本步骤

   (1)根据题意选取研究对象(物体或系统).

   (2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒.

   (3)恰当地选取零势面,确定研究对象在过程中的始态和末态的机械能.

   (4)根据机械能守恒定律的不同表达式列式方程,若选用了增(减)量表达式,(3)就应成为确定过程中,动能、势能在过程中的增减量或各部分机械能在过程中的增减量来列方程进行求解.

[例1]如图5一66所示一质量为m的小球,在B点从静止开始沿半球形容器内壁无摩擦地滑下,B点与容器底部A点的高度差为h,容器质量为M,内壁半径为R.求:

(1)当容器固定在水平桌面上,小球滑至底部A时,容器内壁对小球的作用力大小.

(2)当容器放置在光滑的水平桌面上,小球滑至底部A时,小球相对容器的速度大小.

   解析:(1)m下滑只有重力做功,机械能守恒mgh=½mv2

   达底端A,根据牛顿第二定律T-mg=mv2/R所以T=mg+2mgh/R=mg(1+2h/R)

(2若容器在光滑水平桌面上,选m和M为研究对象,系统机械能守恒,水平方向上动量守恒

   mgh=½mv2+½Mu12,0=mv十Mu1   所以u1=-mv/M

  代入得mgh=½mv2,所以v=,小球相对容器的速度大小为v/=v-u1=v十mv/M

   所以v/=

   答案:(1)mg(1+2h/R),(2)

规律方法  1、机械能守恒定律与圆周运动结合

物体在绳、杆、轨道约束的情况下在竖直平面内做圆周运动,往往伴随着动能,势能的相互转化,若机械能守恒,即可根据机械能守恒去求解物体在运动中经过某位里时的速度,再结合圆周运动、牛顿定律可求解相关的运动学、动力学的量.

[例2]如图1所示.一根长L的细绳,固定在O点,绳另一端系一条质量为m的小球.起初将小球拉至水平于A点.求(1)小球从A点由静止释放后到达最低点C时的速度.(2)小球摆到最低点时细绳的拉力。

解:(1)由机械能守恒有:mgl=½mvC2;

(2) 在最低点,由向心力公式有T-mg=mv2/l;T=3mg;

[例3]在上例中,将小球自水平向下移,使细绳与水平方向成θ=300角,如图2所示.求小球从A点由静止释放后到达最低点C时细绳的拉力.

解:

[例4]如图,长为L的细绳一端拴一质量为m的小球,另一端固定在O点,在O点的正下方某处P点有一钉子,把线拉成水平,由静止释放小球,使线碰到钉子后恰能在竖直面内做圆周运动,求P点的位置

解析: 设绳碰到钉子后恰能绕P点做圆周运动的半径为r,运动到最高点的速率为V,由机械能守恒定律得:

在最高点,由向心力公式有:,,

[例5]如图5-69所示,长为l不可伸长的细绳一端系于O点,一端系一质量为m的物体,物体自与水平夹角300(绳拉直)由静止释放,问物体到达O点正下方处的动能是多少?

   错解:由机械能守恒定律:mg1·5l=½mv2,   所以最低点动能为1.5mgl

   分析:小球运动过程是:先由A点自由下落至B.自B点做圆周运动,就在B处绳使其速度改变的瞬间小球的动能减少,下面我们通过运算来说明这个问题.

   正确解法: vB=,其方向竖直向下,将该速度分解如图5一70所示   v2=vcos300=cos300 

   由B至C的过程中机械能守恒  ½mv十mg0.5l=½mv

  由此得½mv=5mgl/4

答案:5mgl/4

   点评:通过例5、例6两题,人们会有这种想法:为什么例 5中在速度改变瞬间(B点)有能量损失,而例 6中就没有能量损失,这其中原因是什么呢?仔细考虑可知:例6中绳的作用力与速度垂直,所以只改变了速度的方向而没有改变速度的大小,而例5中虽然速度大小发生了变化(v2<vB).由动量定理可知,沿半径方向绳的拉力T产生的冲量使沿绳方向的动量发生了变化,即TΔt=mv1,因此该情况就有能量损失,也就不可用机械能守恒定律.

 [例6]如图所示,在一根长为L的轻杆上的B点和末端C各固定一个质量为m的小球,杆可以在竖直面上绕定点A转动,BC=L/3,现将杆拉到水平位置从静止释放,求末端小球C摆到最低点时速度的大小和这一过程中BC端对C球所做的功。(杆的质量和摩擦不计)

解析:B、C两球系统在下摆的过程中只有重力做功,系统机械能守恒。

;  由于B、C角速度相同,

解得:

对于C球,由动能定理得解得杆BC段对C球做功

试题详情

动量守恒是矢量守恒,守恒条件是从力的角度,即不受外力或外力的和为零。机械能守恒是标量守恒,守恒条件是从功的角度,即除重力、弹力做功外其他力不做功。确定动量是否守恒应分析外力的和是否为零,确定系统机械能是否守恒应分析外力和内力做功,看是否只有重力、系统内弹力做功。还应注意,外力的和为零和外力不做功是两个不同的概念。所以,系统机械能守恒时动量不一定守恒;动量守恒时机械能也不一定守恒。

[例4]如图所示装置,木块B与水平面的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在子弹射入木块到弹簧压缩至最短的整个过程中(    )

   A.动量守恒、机械能守恒    B.动量不守恒,机械能不守恒

   C.动量守恒、机械能不守恒   D.动量不守恒、机械能守恒

   解析:在力学中,给定一个系统后,这个系统经某一过程兵动量和机械能是否守恒,要看是否满足动量守恒和机械能守恒条件.在这个过程中,只要系统不受外力作用或合外力为零(不管系统内部相互作用力如何)动量必然守恒.但在子弹、木块、弹簧这个系统中,由于弹簧的压缩,墙对弹簧有作用力,所以水平合外力不等于零,系统动量不守恒,若选取子弹,木块为系统,在子弹射入木块过程中,因t很短,弹簧还来不及压缩,或认为内力远大于外力(弹力),系统动量守恒.在这个过程中,外力  F、N、 mg不做功.系统内弹力做功,子弹打入木块的过程中,有摩擦力做功,有机械能向内能转化.因此机械能不守恒(若取子弹打入B后,A、B一起压缩弹簧的过程,系统只有弹力做功,机械能守恒).答案:B

   由上述分析可知,判定系统动量,机械能是否守恒的关键是明确守恒条件和确定哪个过程.  

[例5]两个完全相同的质量均为m的沿块A和B,放在光滑水平面上,滑块A与轻弹簧相连,弹簧另一端固定在墙上,当滑块B以v0的初速度向滑块A运动时,如图所示,碰A后不再分开,下述正确的是(    )

  A.弹簧最大弹性势能为½mv02  B.弹簧最大弹性势能为¼mv02

  C.两滑块相碰以及以后一起运动系统机械能守恒  

D.两滑块相碰以及以后一起运动中,系统动量守恒

解析:两滑决的运动应分两阶段,第一阶段两滑决相碰,由于碰后两滑块一起运动,有部分机械能转化为内能.机械能不守恒,但动量守恒.因此有:   mv0=(m十m)v   所以v=½v0

第二阶段,两滑块一起在弹簧力作用下来回振动,此时只有弹簧力做功,机械能守恒.但在此过程系统外力冲量不为零,系统动量不守恒,因此有:   EP+½(m+m)v2/2=½(m+m)v2

   所以弹性势能最大为v/2=0时,所以EP =¼mv.   答案:B

试题详情

   首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.

(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;

(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.

(3)对一些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒

说明:1.条件中的重力与弹力做功是指系统内重力弹力做功.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力作功,其他力不做功或者其他力的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化.如图5-50所示,光滑水平面上,A与L1、L2二弹簧相连,B与弹簧L2相连,外力向左推B使L1、L2 被压缩,当撤去外力后,A、L2、B这个系统机械能不守恒,因为LI对A的弹力是这个系统外的弹力,所以A、L2、B这个系统机械能不守恒.但对LI、A、L2、B这个系统机械能就守恒,因为此时L1对A的弹力做功属系统内部弹力做功.

 2.只有系统内部重力弹力做功,其它力都不做功,这里其它力合外力不为零,只要不做功,机械能仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和介质阻力,无电磁感应过程等等),则系统的机械能守恒,如图5-51所示光滑水平面上A与弹簧相连,当弹簧被压缩后撤去外力弹开的过程,B相对A没有发生相对滑动,A、B之间有相互作用的力,但对弹簧A、B物体组成的系统机械能守恒.

3.当除了系统内重力弹力以外的力做了功,但做功的代数和为零,但系统的机械能不一定守恒.如图5-52所示,物体m在速度为v0时受到外力F作用,经时间t速度变为vt.(vt>v0)撤去外力,由于摩擦力的作用经时间t/速度大小又为v0,这一过程中外力做功代数和为零,但是物体m的机械能不守恒。

[例2]对一个系统,下面说法正确的是(   )

   A.受到合外力为零时,系统机械能守恒

   B.系统受到除重力弹力以外的力做功为零时,系统的机械能守恒

   C.只有系统内部的重力弹力做功时,系统的机械能守恒

   D.除重力弹力以外的力只要对系统作用,则系统的机械能就不守恒

   解析:A,系统受到合外力为零时,系统动量守恒,但机械能就不一定守恒,   答案:C

[例3]如图所示,在光滑的水平面上放一质量为M=96.4kg的木箱,用细绳跨过定滑轮O与一质量为m=10kg的重物相连,已知木箱到定滑轮的绳长AO=8m,OA绳与水平方向成300角,重物距地面高度h=3m,开始时让它们处于静止状态.不计绳的质量及一切摩擦,g取10 m/s2,将重物无初速度释放,当它落地的瞬间木箱的速度多大?

解析:本题中重物m和水箱M动能均来源于重物的重力势能,只是m和M的速率不等.

根据题意,m,M和地球组成的系统机械能守恒,选取水平面为零势能面,有mgh=½mv+½Mv

从题中可知,O距M之间的距离为  h/=Oasin300=4 m

当m落地瞬间,OA绳与水平方向夹角为α,则cosα==4/5

 而m的速度vm等于vM沿绳的分速度,如图5-55所示,则有  vm=vMcosα                             

   所以,由式①一③得vM=m/s   答案:m/ s

试题详情

3.表达形式:EK1+Epl=Ek2+EP2

(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中EP是相对的.建立方程时必须选择合适的零势能参考面.且每一状态的EP都应是对同一参考面而言的.

(2)其他表达方式,ΔEP=一ΔEK,系统重力势能的增量等于系统动能的减少量.

(3)ΔEa=一ΔEb,将系统分为a、b两部分,a部分机械能的增量等于另一部分b的机械能的减少量,

试题详情

2.机械能守恒的条件

(1)对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.

(2)对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.

试题详情

1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.

试题详情

3、动能和势能(重力势能与弹性势能)统称为机械能.

试题详情

2.重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=ΔEP=EP一EP,克服重力做功等于重力势能的增加量W=ΔEP=EP-EP

   特别应注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.

试题详情

1.由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.

(1)物体由于受到重力作用而具有重力势能,表达式为 EP=一mgh.式中h是物体到零重力势能面的高度.

(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为 EP=一mgh,若物体在零势能参考面下方低h处其重力势能为 EP=一mgh,“一”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同一物体在同一位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.

[例1]如图所示,桌面高地面高H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)(    )

   A.mgh; B.mgH;C.mg(H+h); D.mg(H-h)

解析:这一过程机械能守恒,以桌面为零势面,E=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E=mgh ,末为 E=½mv2-mgH,而½mv2=mg(H+h)由此两式可得:E=mgh   答案:A

(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.

试题详情


同步练习册答案