0  397380  397388  397394  397398  397404  397406  397410  397416  397418  397424  397430  397434  397436  397440  397446  397448  397454  397458  397460  397464  397466  397470  397472  397474  397475  397476  397478  397479  397480  397482  397484  397488  397490  397494  397496  397500  397506  397508  397514  397518  397520  397524  397530  397536  397538  397544  397548  397550  397556  397560  397566  397574  447090 

1.波长λ:两个相邻的,在振动过程中相对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻的波峰或相邻的波谷之间的距离.在纵波中两相邻的的密部(或疏部)中央间的距离,振动在一个周期内在介质中传播的距离等于波长

试题详情

4.机械波的传播过程

(1)机械波传播的是振动形式和能量.质点只在各自的平衡位置附近做振动,并不随波迁移.后一质点的振动总是落后于带动它的前一质点的振动。

(2)介质中各质点的振动周期和频率都与波源的振动周期和频率相同.

(3)由波源向远处的各质点都依次重复波源的振动.

试题详情

3、分类:①横波:质点的振动方向与波的传播方向垂直.凸起部分叫波峰,凹下部分叫波谷

②纵波:质点的振动方向与波的传播方向在一直线上.质点分布密的叫密部,疏的部分叫疏部,液体和气体不能传播横波。

试题详情

2、产生条件:(1)有作机械振动的物体作为波源.(2)有能传播机械振动的介质.

试题详情

1、定义:机械振动在介质中传播就形成机械波.

试题详情

3、单摆的综合应用

[例7](1998年全国)图中两单摆摆长相同,平衡时两摆球刚好触.现将摆球A在两摆线所在平面向左拉开一小角度后释放,碰撞后,两球分开各自做简谐运动.以mA、mB分别表示摆球A、B的质量,则(   )

   A.如果mA>mB,下一次碰撞将发生在平衡位置右侧

   B.如果mA<mB,下一次碰撞将发生在平衡位置左侧

   C.无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置右侧

   D.无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置左侧

解析:由于两球线长相等,所以两球做单摆运动的周期必然相等.两球相碰后有这几种可能:①碰后两球速度方向相反,这样两球各自到达最高点再返回到平衡位置所用的时间相等,故两球只能在平衡位置相遇;②碰后两球向同一方向运动,则每个球都先到达最大位移处然后返回平衡位置,所用的时间也都是半个周期,两球仍只能在平衡位置相遇;③碰后一球静止,而另一球运动,则该球先到最大位移又返回到平衡位置,所用时间还是半个周期,在平衡位置相遇.

   因此,不管mA>mB,还是mA<mB 还是mA=mB ,无论摆球质量之比为多少,下一次碰撞都只能发生在平衡位置,也就是说不可能发生在平衡位置的右侧或左侧,所以选项C、D正确.

拓展:两球的碰撞是否是弹性碰撞?

[例8]如图所示,两个完全相同的弹性小球1,2,分别挂在长L和L/4的细线上,重心在同一水平面上且小球恰好互相接触,把第一个小球向右拉开一个不大的距离后由静止释放,经过多长时间两球发生第10次碰撞?

解析:因将第1个小球拉开一个不大的距离,故摆动过程应符合单摆的周期公式有,系统振动周期为,在同一个T内共发生两次碰撞,球1从最大位移处由静止释放后.经发生10次碰撞,且第10次碰后球1又摆支最大位移处.

[例9]一单摆的摆长为L,摆球的质量为m,原来静止,在一个水平冲量I作用下开始摆动.此后,每当摆球经过平衡位置时,便给它一个与其速度方向一致的冲量I,求摆球经过多长时间后其摆线与竖直方向间的夹角可以达到α?(α≤50,不计阻力,所施冲量时间极短)

解析:设摆球经过平衡位置的次数为n,则摆球达最大偏角α时需用时间t=(n-l) …………①

由动量定理和机械能守恒定律得:nI=mv………②    ½mv2=mgl(1-cosα)………③

单摆周期……… ④   联立①-④式得:

[例10]如图所示,AB为半径R=7.50 m的光滑的圆弧形导轨,BC为长s=0.90m的光滑水平导轨,在B点与圆弧导轨相切,BC离地高度h=1.80 m,一质量m1=0.10 kg的小球置于边缘C点,另一质量m2=0. 20 kg的小球置于B点,现给小球m1一个瞬时冲量使它获得大小为0.90 m/s的水平向右速度,当m1运动到B时与m2发生弹性正碰,g取10 m/s2,求:

(1)两球落地的时间差Δt;

 (2)两球落地点之间的距离Δs.

解析:(1 )m1与m2发生弹性正碰,则设碰后m1和m2速度分别为v1/和v2/,有

得v1=一0.3 m/s,v'2=0. 6 m/s

可见m1以0. 3 m/s速度反弹,从B到C,t=s/v1/=3s, m2以0. 6 m/s速度冲上圆弧轨道,可证明m2运动可近似为简谐运动,在圆弧上运动时间为=2.72 s,再从B到C, t2 =s/v2/=1.5s则△t=t2+T/2一t1=1.22 s. (2)利用平抛运动知识不难求得△s=0.18 m.

[例11]如图所示,a、b、Co 质量相等的三个弹性小球(可视为质点),a、b分别悬挂在L1=1.0m,L2=0.25 m的轻质细线上,它们刚好与光滑水平面接触而不互相挤压,ab相距10cm。若c从a和b的连线中点处以v0=5 cm/s的速度向右运动,则c将与b和a反复碰撞而往复运动。

   已知碰撞前后小球c均沿同一直线运动,碰撞时间极短,且碰撞过程中没有机械能损失,碰撞后a和b的摆动均可视为简谐振动。以c球开始运动作为时间零点,以向右为正方向,试在图中画也在l0s内C、b两球运动的位移-时间图像,两图像均以各自的初位置为坐标原点。(运算中可认为)

[答案]如图

[例12]有几个登山运动员登上一无名高峰,但不知此峰的高度,他们想迅速估测出高峰的海拔高度,但是他们只带了一些轻质绳子、小刀、小钢卷尺、可当作秒表用的手表和一些食品,附近还有石子、树木等,其中一个人根据物理知识很快就测出了海拔高度,请写出测量方法,需记录的数据,推导出计算高峰的海拔高度的计算式.

解析:用细线和小石块做一个单摆,量出摆线长L1,并测出单摆周期T1.设小石块重心到细线与小石块的连接处的距离为d,则改变摆线长为L2,测出周期T2,则可得当地重力加速度为又由,得

[例13]在长方形桌面上放有:秒表、细绳、铁架台、天平、弹簧秤、钩码,怎样从中选取器材可较为准确地测出桌面面积S?并写出面积表达式.

[解析]用细绳量桌面长,并用此绳(包括到钩码重心)、钩码、铁架台做成单摆,由秒表测出其振动周期T1;同理量桌面宽,做单摆,测出周期T2. 答案:S=

试题展示

       波的性质与波的图像

知识简析  一、机械波

试题详情

2、摆钟问题

单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数……),再由频率公式可以得到:

[例6]有一摆钟的摆长为ll时,在某一标准时间内快amin。若摆长为l2时,在同一标准时间内慢bmin。,求为使其准确,摆长应为多长?(可把钟摆视为摆角很小的单摆)。

[解析]设该标准时间为ts,准确摆钟摆长为lm,走时快的钟周期为T1s,走慢时的周期为T2s,准确的钟周期为T3。不管走时准确与否,钟摆每完成一次全振动,钟面上显示时间都是Ts。

(法一)由各摆钟在ts内钟面上显示的时间求解, 

    对快钟: t+60a=T;    对慢钟: t- 60a=T

   联立解,可得==    最后可得L=

(法二)由各摆钟在ts内的振动次数关系求解:

设快钟的 t s内全振动次数为 nl,慢钟为 n2,准确的钟为n。显然,快钟比准确的钟多振动了60a/T次,慢钟比准确的钟少振动60b/T次,故:

   对快钟:nl=t/T1=n+60a/T=t/T+60a/T

   对慢钟:n2=t/T2=n-60b/T=t/T-60b/T

   联解①②式,并利用单摆周期公式T=2同样可得L=

点窍:对走时不准的摆钟问题,解题时应抓住:由于摆钟的机械构造所决定,钟摆每完成一次全振动,摆钟所显示的时间为一定值,也就是走时准确的摆钟的周期T。

试题详情

5.共振

(1)当驱动力的频率等于振动系统的固有频率时,物体的振幅最大的现象叫做共振.

 (2)条件:驱动力的频率等于振动系统的固有频率.

(3)共振曲线.如图所示.

[例3]行驶着的火车车轮,每接触到两根钢轨相接处的缝隙时,就受到一次撞击使车厢在支着它的弹簧上面振动起来.已知车厢的固有同期是0.58s,每根钢轨的长是12.6 m,当车厢上、下振动得最厉害时,火车的车速等于        m/s.

   解析:该题应用共振的条件来求解.火车行驶时,每当通过铁轨的接缝处就会受到一次冲击力,该力即为策动力.当策动周期T和弹簧与车厢的国有周期相等时,即发生共振,即   T=T= 0.58 s ………①  T=t=L/v……②                                         

   将①代入②解得v=L/0.58=21.7 m/s   答案:21.7m/s

规律方法1、单摆的等效问题

等效摆长:如图所示,当小球垂直纸面方向运动时,摆长为CO.

②等效重力加速度:当单摆在某装置内向上运动加速度为a时,T=2π;当向上减速时T=2π,影响回复力的等效加速度可以这样求,摆球在平衡位置静止时,摆线的张力T与摆球质量的比值.

[例4]如图所示,在光滑导轨上有一个滚轮A,质量为2m,轴上系一根长为L的线,下端悬挂一个摆球B,质量为m,设B摆小球作小幅度振动,求振动周期。

[分析]将2m的A球和m的B球组成系统为研究对象,系统的重心O点可视为单摆的悬点,利用水平方向动量守恒可求出等效摆长。

[解析]A和B两物体组成的系统由于内力的作用,在水平方向上动量守恒,因此A和B速度之比跟质量成反比,即vA/vB=mB/mA=1/2.因此A和B 运动过程中平均速度/=1/2,亦即位移 SA/SB=1/2。,

因为ΔOAA/∽ΔOBB/,则OB/OA=2/1。

对B球来说,其摆长应为2/3 L,因此B球的周期T=2

说明:据动量守恒条件,2m在A位置时,m在 B位置,当2 m运动到A/时,m运动到B/

[例5]如图所示,三根细线OA, OB,OC结于O点,A,B端固定在同一水平面上且相距为L,使AOB成一直角三角形,∠BAO = 300,已知OC绳长也为L,下端C点系一个可视为质点的小球,下面说法中正确的是

A、当小球在纸面内做小角度振动时,周期为:

B.当小球在垂直纸面方向做小角度振动时,周期为

C.当小球在纸面内做小角度振动时,周期为

D.当小球在垂直纸面内做小角度振动时,周期为

解析:当小球在纸面内做简谐振动时,是以0点为圆心,OC长L为半径做变速圆周运动,OA和OB绳没有松弛,其摆长为L,所以周期是;当小球在垂直于纸面的方向上做简谐振动时,摆球是以OC的延长线与AB交点为圆心做振动,其等效的摆长为L十Lsin600/2=L十L/4 ,其周期为,故选A.                                                                                     

拓展:若将上题中的小球改为装满沙子的漏斗,在漏斗摆动的过程中,让沙子匀速的从漏斗底部漏出,则单摆的周期如何变化?(因沙子遂渐漏出,其重心的位置先下移后上升,等效摆长先增加后减小,所以周期先变长后减小)。

[例5]在图中的几个相同的单摆在不同的条件下,关于它们的周期关系,判断正确的是(  )

   A、T1>T2>T3>T4;  B、T1<T2=T3<T4

   C、T1>T2=T3>T4 D、T1<T2<T3<T4

[解析]单摆的周期与重力加速度有关.这是因为是重力的分力提供回复力.当单摆处于(1)图所示的条件下,当摆球偏离平衡位置后,是重力平行斜面的分量(mgsinθ)沿切向分量提供回复力,回复力相对竖直放置的单摆是减小的,则运动中的加速度减小,回到平衡位置的时间变长,周期T1>T3.对于(2)图所示的条件,带正电的摆球在振动过程中要受到天花板上带正电小球的斥力,但是两球间的斥力与运动的方向总是垂直,不影响回复力,故单摆的周期不变,T2=T3.在(4)图所示的条件下,单摆与升降机一起作加速上升的运动,也就是摆球在该升降机中是超重的,相当于摆球的重力增大,沿摆动的切向分量也增大,也就是回复力在增大,摆球回到相对平衡的位置时间变短,故周期变小,T4<T3.综上所述,只有C选项正确.

 点评:对于单摆的周期公式,在摆长不变的条件下,能影响单摆振动的周期的因素就是运动过程中的回复力发生的变化,回复力增大,周期变小,回复力变小,周期变大.这是判断在摆长不变时单摆周期变化的唯一

试题详情

4.受迫振动

(1)振动系统在周期性驱动力作用下的振动叫做受迫振动.

(2)受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.

试题详情

3、阻尼振动与无阻尼振动

(1)振幅逐渐减小的振动叫做阻尼振动.

(2)振幅不变的振动为等幅振动,也叫做无阻尼振动.

注意:等幅振动、阻尼振动是从振幅是否变化的角度来区分的,等幅振动不一定不受阻力作用.

试题详情


同步练习册答案