0  397384  397392  397398  397402  397408  397410  397414  397420  397422  397428  397434  397438  397440  397444  397450  397452  397458  397462  397464  397468  397470  397474  397476  397478  397479  397480  397482  397483  397484  397486  397488  397492  397494  397498  397500  397504  397510  397512  397518  397522  397524  397528  397534  397540  397542  397548  397552  397554  397560  397564  397570  397578  447090 

1.   内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。

试题详情

例5.一定质量的理想气体处于平衡状态Ⅰ.现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则

A.状态Ⅰ时气体的密度比状态Ⅱ时的大

B.状态Ⅰ时气体的平均动能比状态Ⅱ时的大

C.状态Ⅰ时分子间的平均距离比状态Ⅱ时的大

D.状态Ⅰ时每个分子的动能都比状态Ⅱ时的分子平均动能大

解析:题中明确给出状态Ⅱ的温度比状态下的温度低,而理想气体的内能仅由温度决定,因此知B对.分子的平均动能增大或减小了,但不能说某时刻所有分子的动能都增大或都减小了,即使有些分子平均动能很大,仍有些分子的动能很小,选项D错误.由分子动理论知,若该气体体积增大,则分子间距必然增大,反之,气体体积减小则分子间平均距离也减小,由理想气体状态方程PV/T=恒量可知V必然减小,由此确定C正确.

正确解答  BC

例6、 如图为医院为病人输液的部分装置,图中A为输液瓶,B为滴壶,C为进气管,与大气相通。则在输液过程中(瓶A中尚有液体),下列说法正确的是:①瓶A中上方气体的压强随液面的下降而增大;②瓶A中液面下降,但A中上方气体的压强不变;③滴壶B中的气体压强随A中液面的下降而减小;④在瓶中药液输完以前,滴壶B中的气体压强保持不变 

A.①③       B.①④      C.②③       D.②④

分析与解:进气管C端的压强始终是大气压p0,设输液瓶A内的压强为pA,可以得到pA= p0-ρgh,因此pA将随着h的减小而增大。滴壶B的上液面与进气管C端的高度差不受输液瓶A内液面变化的影响,因此压强不变。选B。

[例13] 长直均匀玻璃管内用水银柱封闭一定质量的空气后倒插入水银槽内。静止时露出水银槽面的水银柱高为h,保持温度不变,稍向上提玻璃管(管口仍在槽内水银面下),封闭在管内的空气的体积V和压强p以及水银柱高h各如何变化?

解析:一定质量的气体在温度不变使,气体的压强p和体积V必然同时变化,而达到平衡后,p+ρgh= p0的关系应该依然成立。假设V不变,那么p也不变,而提升后h变大,p+ρgh将大于p0,因此管内水银柱将要下降,即封闭空气的体积V必然增大,压强p必然减小,又由于最终应该有p+ρgh= p0,所以h必然增大。

本题也可以假设提升后p不变,进行推导,结论是完全一致的。

注意前提:管内必须封闭有一定质量的空气。若水银柱上端是真空,那h就始终满足p0=ρgh,向上提升玻璃管不会影响h的大小,那么V就一定增大了。    

[例15] 在一个固定容积的密闭容器中,加入3L的X(g)和2L的Y(g),在一定条件下这两种气体发生反应而生成另两种气体:4X(g)+3Y(g)  2Q(g)+nR(g),达到平衡后,容器内温度不变,而混合气体的压强比原来增大,则该反应方程中的n值可能为

 A.3    B.4    C.5     D.6    

解析:由于反应前后所有物质都是气态,设反应前后的总的物质的量分别为N1N2,由于在一定温度和体积下,气体的压强和气体物质的量成正比,因此生成物的物质的量应该大于反应前的物质的量,只能取n=6,选D。

试题展示

试题详情

3、气体的状态:一定质量的气体,p、V、T确定,状态就确定。其中有两个或三个同时变化时,气体的状态就改变。只有一个参量变化,其余两个都不变是不可能的。

试题详情

2、确定气体压强的方法:①受力分析法;②取等压面法;③牛顿定律法

试题详情

1、气体的状态参量:①温度T;②体积V;③压强p

试题详情

3.加速运动系统中封闭气体压强的确定

常从两处入手:一对气体,考虑用气体定律确定,二是选与气体接触的液柱或活塞等为研究对象,受力分析,利用牛顿第二定律解出.具体问题中常把二者结合起来,建立方程组联立求解.

(1)试管绕轴以角速度ω匀速转动

解:  对水银柱受力分析如图

由牛顿第二定律得:

PS-P0S=mω2 r ,  其中m=ρSh

由几何知识得:r=d-h/2

解得P=P0+ρhω2(d-h/2)

(2)  试管随小车一起以加速度a向右运动

解:  对水银柱受力分析如图

由牛顿第二定律得:

PS-p0S=ma  m=ρSh

解得:p=p0+ρah

(3)气缸和活塞在F作用下沿光滑的水平面一起向右加速运动

解:对整体水平方向应用牛顿第二定律:

F=(m+M)a

对活塞受力分析如图:由牛顿第二定律得:

F+PS-P0S=ma     ②

由①②两式可得:

P=P0

拓展:

小 结:当物体做变速运动时:利用牛顿运动定律列方程来求气体的压强利用F=ma,求p气。总结:计算气缸内封闭气体的压强时,一般取活塞为研究对象进行受力分析.但有时也要以气缸或整体为研究对象.所以解题时要灵活选取研究对象

试题详情

2.静止或匀速运动系统中封闭气体压强的确定

   (1)液体封闭的气体的压强

①    平衡法:选与气体接触的液柱为研究对象,进行受力分析,利用它的受力平衡,求出气体的压强.

例1、如图,玻璃管中灌有水银,管壁摩擦不计,设p0=76cmHg,求封闭气体的压强(单位:cm

解析:本题可用静力平衡解决.以图(2)为例求解

   取水银柱为研究对象,进行受力分析,列平衡方程得Ps= P0S+mg;所以p= P0S十ρghS,所以P=P0十ρgh(Pa)或P=P0+h(cmHg)

   答案:P=P0十ρgh(Pa)或P=P0+ h(cmHg)

    解(4):对水银柱受力分析(如右图)

沿试管方向由平衡条件可得:

pS=p0S+mgSin30°

P=

=p0+ρhgSin30°=76+10Sin30°(cmHg) =76+5 (cmHg) =81 (cmHg)

点评:此题虽为热学问题,但典型地体现了力学方法,即:选研究对象,进行受力分析,列方程.

拓展:

[例2]在竖直放置的U形管内由密度为ρ的两部分液体封闭着两段空气柱.大气压强为P0,各部尺寸如图所示.求A、B气体的压强.

   求pA:取液柱h1为研究对象,设管截面积为S,大气压力和液柱重力向下,A气体压力向上,液柱h1静止,则 P0S+ρgh1S=PAS

   所以   PA=P0+ρgh1

   求 pB:取液柱h2为研究对象,由于h2的下端以下液体的对称性,下端液体自重产生的任强可不考虑,A气体压强由液体传递后对h2的压力向上,B气体压力、液柱h2重力向下,液往平衡,则PBS+ρgh2S=PAS

   所以   PB=P0+ρgh1一ρgh2

熟练后,可直接由压强平衡关系写出待测压强,不一定非要从力的平衡方程式找起.

小结:受力分析:对液柱或固体进行受力分析,当物体平衡时: 利用F=0,求p

注意: (1)正确选取研究对象

(2)正确受力分析,别漏画大气压力

②    取等压面法:根据同种液体在同一水平液面压强相等,在连通器内灵活选取等压面,由两侧压强相等建立方程求出压强,仍以图7-3为例:求pB从A气体下端面作等压面,则有PB十ρgh2=PA=P0+ρgh1,所以PB=P0+ρgh1一ρgh2

例3、如图,U型玻璃管中灌有水银.求封闭气体的压强.设大气压强为P0=76cmHg、(单位:cm)

解析:本题可用取等压面的方法解决.

   液面A和气体液面等高,故两液面的压强相等, 则中气体压强:p=pA= P0+h(cmHg).

   答案:P= P0+h

点评:本题事实上是选取A以上的水银柱为研究对象,进行受力分析,列平衡方程求出的关系式:P0+h=PA

拓展:

小结:

取等压面法:

根据同种不间断液体在同一水平面压

强相等的“连通器原理”,选取恰当的等压

③    面,列压强平衡方程求气体的压强. 选取等压面时要注意,等压面下一定要是同种液体,否则就没有压强相等的关系.

(2)固体(活塞或气缸)封闭的气体的压强

由于该固体必定受到被封闭气体的压力,所以可通过对该固体进行受力分析,由平衡条件建立方程,来找出气体压强与其它各力的关系.

例4:下图中气缸的质量均为M,气缸内部的横截面积为S,气缸内壁摩擦不计.活塞质量为m,求封闭气体的压强(设大气压强为p0)

解析:此问题中的活塞和气缸均处于平衡状态.当以活塞为研究对象,受力分析如图甲所示,由平衡条件得 pS=(m0+m)g+P0S;P= p=

P0+(m0+m)g/S

  在分析活塞、气缸受力时,要特别注意大气压力,何时必须考虑,何时可不考虑.

 (3).活塞下表面与水平面成θ角解:对活塞受分析如图

  由竖直方向合力为零可得: p0S+mg=pS’cosθ

S’cosθ=S   ∴ p=P0+mg/S

拓展:

试题详情

(1)一定质量的气体,在温度不变的情况下,体积减小时,压强增大,体积增大时,压强减小。

(2)一定质量的气体,在压强不变的情况下,温度升高,体积增大。

(3)一定质量的气体,在体积不变的情况下,温度升高,压强增大。

规律方法  一、气体压强的计算

1.气体压强的特点

   (1)气体自重产生的压强一般很小,可以忽略.但大气压强P0却是一个较大的数值(大气层重力产生),不能忽略.

   (2)密闭气体对外加压强的传递遵守帕斯卡定律,即外加压强由气体按照原来的大小向各个方向传递.

试题详情

(1)气体分子运动的特点是:①气体分子间的距离大约是分子直径的10倍,分子间的作用力十分微弱。通常认为,气体分子除了相互碰撞或碰撞器壁外,不受力的作用。②每个气体分子的运动是杂乱无章的,但对大量分子的整体来说,分子的运动是有规律的。研究的方法是统计方法。气体分子的速率分布规律遵从统计规律。在一定温度下,某种气体的分子速率分布是确定的,可以求出这个温度下该种气体分子的平均速率。

(2)用分子动理论解释气体压强的产生(气体压强的微观意义)。气体的压强是大量分子频繁碰撞器壁产生的。压强的大小跟两个因素有关:①气体分子的平均动能,②分子的密集程度。

试题详情

3、压强:p

器壁单位面积上受到的压力

①产生:

由大量分子频繁碰撞器壁产生的

(单位体积内分子个数越多,分子的平均速率越大,气体的压强就越大)

②单位:Pa

1Pa=1N/m2

1atm=1.013×105Pa=76cmHg

③计算:

P=F/sPgh

试题详情


同步练习册答案