0  399310  399318  399324  399328  399334  399336  399340  399346  399348  399354  399360  399364  399366  399370  399376  399378  399384  399388  399390  399394  399396  399400  399402  399404  399405  399406  399408  399409  399410  399412  399414  399418  399420  399424  399426  399430  399436  399438  399444  399448  399450  399454  399460  399466  399468  399474  399478  399480  399486  399490  399496  399504  447090 

1.准确理解、熟练运用,不断深化有关函数的基础知识

在中学阶段函数只限于定义在实数集合上的一元单值函数,其内容可分为两部分.第一部分是函数的概念和性质,这部分的重点是能从变量的观点和集合映射的观点理解函数及其有关概念,掌握描述函数性质的单调性、奇偶性、周期性等概念;第二部分是七类常见函数(一次函数、二次函数、指数函数、对数函数、三角函数和反三角函数)的图象和性质.第一部分是理论基础,第二部分是第一部分的运用与发展.

例9.已知函数f(x),x∈F,那么集合{(x,y)|y=f(x),x∈F}∩{(x,y)|x=1}中所含元素的个数是.(   )

A.0    B.1    C.0或1    D.1或2

分析:这里首先要识别集合语言,并能正确把集合语言转化成熟悉的语言.从函数观点看,问题是求函数y=f(x),x∈F的图象与直线x=1的交点个数(这是一次数到形的转化),不少学生常误认为交点是1个,并说这是根据函数定义中“惟一确定”的规定得到的,这是不正确的,因为函数是由定义域、值域、对应法则三要素组成的.这里给出了函数y=f(x)的定义域是F,但未明确给出1与F的关系,当1∈F时有1个交点,当1 F时没有交点,所以选C.

试题详情

4.树立函数思想,使学生善于用运动变化的观点分析问题.

本部分内容的重点是:通过对问题的讲解与分析,使学生能较好的调动函数的基础知识解决问题,并在解决问题中深化对基础知识的理解,深化对函数思想、数形结合思想的理解与运用.

难点是:函数思想的理解与运用,推理论证能力、综合运用知识解决问题能力的培养与提高.

函数的综合运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.因此,运动变化、相互联系、相互制约是函数思想的精髓,掌握有关函数知识是运用函数思想的前提,提高用初等数学思想方法研究函数的能力,树立运用函数思想解决有关数学问题的意识是运用函数思想的关键.

试题详情

3.初步沟通函数与方程、不等式及解析几何有关知识的横向联系,提高综合运用知识解决问题的能力.

试题详情

2.掌握初等数学研究函数的方法,提高研究函数的能力,重视数形结合数学思想方法的运用和推理论证能力的培养.

试题详情

1.在全面复习函数有关知识的基础上,进一步深刻理解函数的有关概念,全面把握各类函数的特征,提高运用基础知识解决问题的能力.

试题详情

3.重视综合运用知识分析问题解决问题的能力和推理论证能力的培养.函数是数学复习的开始,还不可能在大范围内综合运用知识.但从复习开始就让学生树立综合运用知识解决问题的意识是十分重要的.推理论证能力是学生的薄弱环节,近几年高考命题中加强对这方面的考查,尤其是对代数推理论证能力的考查是十分必要的.本课题在例题安排上作了这方面的考虑.

具体要求是:

试题详情

2.以数学知识为载体突出数学思想方法.数学思想方法是观念性的东西,是解决数学问题的灵魂,同时它又离不开具体的数学知识.函数内容最重要的数学思想是函数思想和数形结合的思想.此外还应注意在解题中运用的分类讨论、换元等思想方法.解较综合的数学问题要进行一系列等价转化或非等价转化.因此本课题也十分重视转化的数学思想.

试题详情

函数的综合复习是在系统复习函数有关知识的基础上进行函数的综合应用:

1.在应用中深化基础知识.在复习中基础知识经历一个由分散到系统,由单一到综合的发展过程.这个过程不是一次完成的,而是螺旋式上升的.因此要在应用深化基础知识的同时,使基础知识向深度和广度发展.

试题详情

(二)函数的图象

1.掌握描绘函数图象的两种基本方法--描点法和图象变换法.

2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.

3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.

4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.

以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.

运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点.

1.作函数图象的一个基本方法

例7.作出下列函数的图象(1)y=|x-2|(x+1);(2)y=10|lgx|.

分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.

解:(1)当x≥2时,即x-2≥0时,

当x<2时,即x-2<0时,

这是分段函数,每段函数图象可根据二次函数图象作出(见图6)

(2)当x≥1时,lgx≥0,y=10|lgx|=10lgx=x;

当0<x<1时,lgx<0,

所以

这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图7)

说明:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x,y的变化范围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图象.

在变换函数解析式中运用了转化变换和分类讨论的思想.

2.作函数图象的另一个基本方法--图象变换法.

一个函数图象经过适当的变换(如平移、伸缩、对称、旋转等),得到另一个与之相关的图象,这就是函数的图象变换.

在高中,主要学习了三种图象变换:平移变换、伸缩变换、对称变换.

(1)平移变换

函数y=f(x+a)(a≠0)的图象可以通过把函数y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;

函数y=f(x)+b(b≠0)的图象可以通过把函数y=f(x)的图象向上(b>0)或向下(b<0)平移|b|个单位而得到.

(2)伸缩变换

函数y=Af(x)(A>0,A≠1)的图象可以通过把函数y=f(x)的图象上各点的纵坐标伸长(A>1)或缩短(0<A<1)成原来的A倍,横坐标不变而得到.

函数y=f(ωx)(ω>0,ω≠1)的图象可以通过把函数y=f(x)的图象上

而得到.

(3)对称变换

函数y=-f(x)的图象可以通过作函数y=f(x)的图象关于x轴对称的图形而得到.

函数y=f(-x)的图象可以通过作函数y=f(x)的图象关于y轴对称的图形而得到.

函数y=-f(-x)的图象可以通过作函数y=f(x)的图象关于原点对称的图形而得到.

函数y=f-1(x)的图象可以通过作函数y=f(x)的图象关于直线y=x对称的图形而得到。

函数y=f(|x|)的图象可以通过作函数y=f(x)在y轴右方的图象及其与y轴对称的图形而得到.

函数y=|f(x)|的图象可以通过作函数y=f(x)的图象,然后把在x轴下方的图象以x轴为对称轴翻折到x轴上方,其余部分保持不变而得到.

例8.已知f(x+199)=4x+4x+3(x∈R),那么函数f(x)的最小值为____.

分析:由f(x+199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得

求得f(x)的最小值即f(x+199)的最小值是2.

说明:函数图象与函数性质本身在学习中也是密切联系的,是“互相利用”关系,函数图象在判断函数奇偶性、单调性、周期性及求最值等方面都有重要用途.

试题详情

(一)函数的性质

函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.

复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.

3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.

这部分内容的重点是对函数单调性和奇偶性定义的深入理解.

函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.

对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.

这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

1.对函数单调性和奇偶性定义的理解

例4.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是  (   )

A.1    B.2       C.3    D.4

分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误.

奇函数的图象关于原点对称,但不一定经过原点,因此②不正确.

若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A.

说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零.

2.复合函数的性质

复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,因变量y通过中间变量u与自变量x建立起函数关系,函数u=g(x)的值域是y=f(u)定义域的子集.

复合函数的性质由构成它的函数性质所决定,具备如下规律:

(1)单调性规律

如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么

若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数.

(2)奇偶性规律

若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数.

例5.若y=log(2-ax)在[0,1]上是x的减函数,则a的取值范围是(  )

A.(0,1)   B.(1,2)    C.(0,2)    D.[2,+∞)

分析:本题存在多种解法,但不管哪种方法,都必须保证:①使log(2-ax)有意义,即a>0且a≠1,2-ax>0.②使log(2-ax)在[0,1]上是x的减函数.由于所给函数可分解为y=logu,u=2-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=log(2-ax)定义域的子集.

解法一:因为f(x)在[0,1]上是x的减函数,所以f(0)>f(1),

即log2>log(2-a).

解法二:由对数概念显然有a>0且a≠1,因此u=2-ax在[0,1]上是减函数,y= logu应为增函数,得a>1,排除A,C,再令

故排除D,选B.

说明:本题为1995年全国高考试题,综合了多个知识点,无论是用直接法,还是用排除法都需要概念清楚,推理正确.

3.函数单调性与奇偶性的综合运用

例6.甲、乙两地相距Skm,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.

(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;

(2)为了使全程运输成本最小,汽车应以多大速度行驶.

分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决.

故所求函数及其定义域为

但由于题设条件限制汽车行驶速度不超过ckm/h,所以(2)的解决需要

论函数的增减性来解决.

由于vv>0,v-v>0,并且

又S>0,所以

则当v=c时,y取最小值.

说明:此题是1997年全国高考试题.由于限制汽车行驶速度不得超过c,因而求最值的方法也就不完全是常用的方法,再加上字母的抽象性,使难度有所增大.

试题详情


同步练习册答案