4.给出下列命题:①·=0,则=0或=0. ②若为单位向量且//,则=||·.
③··=||3. ④若与共线,与共线,则与共线.其中正确的个数是 ( )
A.0 B.1 C.2 D.3
3.把直线按向量平移后,所得直线与圆相
切,则实数的值为 ( A )
A.39 B.13 C.-21 D.-39
2.已知△ABC中,点D在BC边上,且则的值是( )
A. B. C.-3 D.0
1.已知的值为 ( )
A.-6 B.6 C. D.-
2.导数的几何意义.
1.曲线的切线及切线的斜率.
2.求曲线在点处的切线.
1.求曲线在点处的切线.
例1 (1)求曲线在点处的切线方程.
(2)求函数在点处的导数.
解: (1)
所以,所求切线的斜率为
因此,所求的切线方程为即
(2)因为
所以,所求切线的斜率为,
因此,所求的切线方程为即
例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、、附近的变化情况.
解: 我们用曲线在、、处的切线,
刻画曲线在上述三个时刻附近的变化情况.
(1) 当时,曲线在处的切线平行于轴,
所以,在附近曲线比较平坦,几乎没有升降.
(2)当时,曲线在处的切线的斜率,
所以,在附近曲线下降,
即函数在附近单调递减.
(3)当时,曲线在处的切线的斜率,
所以,在附近曲线下降,
即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,
这说明曲线在附近比在附近下降的缓慢.
例3 如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
解: 血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,
从图像上看,它表示曲线在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,
可以得到此时刻药物浓度瞬时变化率的近似值.
作处的切线,并在切线上去两点,如,,
则它的斜率为,所以
下表给出了药物浓度瞬时变化率的估计值:
|
0.2 |
0.4 |
0.6 |
0.8 |
药物浓度瞬时变化率 |
0.4 |
0 |
-0.7 |
-1.4 |
(四)函数在点处的导数、导函数、导数之间的区别与联系
(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.
(2)函数的导数,是指某一区间内任意点而言的,就是函数的导函数.
(3)函数在点处的导数就是导函数在处的函数值,这也是求函数在点处的导数的方法之一.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com