0  399981  399989  399995  399999  400005  400007  400011  400017  400019  400025  400031  400035  400037  400041  400047  400049  400055  400059  400061  400065  400067  400071  400073  400075  400076  400077  400079  400080  400081  400083  400085  400089  400091  400095  400097  400101  400107  400109  400115  400119  400121  400125  400131  400137  400139  400145  400149  400151  400157  400161  400167  400175  447090 

例4. 如图6所示,在水平地面上有一辆运动的平板小车,车上固定一个盛水的杯子,杯子的直径为R。当小车作匀加速运动时,水面呈如图所示状态,左右液面的高度差为h,则小车的加速度方向指向如何?加速度的大小为多少?

解析:我们由图可以看出物体运动情况,根据杯中水的形状,可以构建这样的一个模型,一个物块放在光滑的斜面上(倾角为),重力和斜面的支持力的合力提供物块沿水平方向上的加速度,其加速度为:

我们取杯中水面上的一滴水为研究对象,水滴受力情况如同斜面上的物块。由题意可得,取杯中水面上的一滴水为研究对象,它相对静止在“斜面”上,可以得出其加速度为,而,得,方向水平向右。

点评:在本题中可以突出物体的受力特征,建立等效模型,用简捷的等效物理模型代替那些真实的、复杂的物理情景,从而使复杂问题的求解过程得到直观、优化,诸如此类的还有等时圆等等。

[模型要点]

斜面固定时,对斜面上的物体受力分析,建立坐标系进行正交分解,选择利用三大定律列方程求解;对斜面不固定时,我们将斜面与斜面上的物体看成系统,仔细观察题中条件,采用整体法或动量定理甚至动量守恒定律处理。

[误区点拨]

(1)要注意斜面上物体受到摩擦力的种类、方向判断,如斜面倾角的比较等;(2)在采用整体法处理斜面体与它上面的物体时要区分变速运动部分(合外力)与整体的质量;(3)在计算正压力时遗漏除重力以外的其他力产生的作用而导致摩擦力大小计算错误;(4)在分析电磁力时电荷或导体棒的极值问题而引起的弹力或摩擦力的变化;

[模型演练]

(2005年西南联考)如图7所示,质量为M的木板放在倾角为的光滑斜面上,质量为m的人在木板上跑,假如脚与板接触处不打滑。

(1)要保持木板相对斜面静止,人应以多大的加速度朝什么方向跑动?

(2)要保持人相对于斜面的位置不变,人在原地跑而使木板以多大的加速度朝什么方向运动?

答案:(1)要保持木板相对斜面静止,木板要受到沿斜面向上的摩擦力与木板的下滑力平衡,即,根据作用力与反作用力人受到木板对他沿斜面向下的摩擦力,所以人受到的合力为:

方向沿斜面向下。

(2)要保持人相对于斜面的位置不变,对人有,F为人受到的摩擦力且沿斜面向上,根据作用力与反作用力等值反向的特点判断木板受到沿斜面向下的摩擦力,大小为

所以木板受到的合力为:

方向沿斜面向下。

试题详情

例3. 带负电的小物体在倾角为的绝缘斜面上,整个斜面处于范围足够大、方向水平向右的匀强电场中,如图5所示。物体A的质量为m,电量为-q,与斜面间的动摩擦因素为,它在电场中受到的电场力的大小等于重力的一半。物体A在斜面上由静止开始下滑,经时间t后突然在斜面区域加上范围足够大的匀强磁场,磁场方向与电场强度方向垂直,磁感应强度大小为B,此后物体A沿斜面继续下滑距离L后离开斜面。

(1)物体A在斜面上的运动情况?说明理由。

(2)物体A在斜面上运动过程中有多少能量转化为内能?(结果用字母表示)

解析:(1)物体A在斜面上受重力、电场力、支持力和滑动摩擦力的作用,<1>小物体A在恒力作用下,先在斜面上做初速度为零的匀加速直线运动;<2>加上匀强磁场后,还受方向垂直斜面向上的洛伦兹力作用,方可使A离开斜面,故磁感应强度方向应垂直纸面向里。随着速度的增加,洛伦兹力增大,斜面的支持力减小,滑动摩擦力减小,物体继续做加速度增大的加速运动,直到斜面的支持力变为零,此后小物体A将离开地面。

(2)加磁场之前,物体A做匀加速运动,据牛顿运动定律有:

解出

A沿斜面运动的距离为:

加上磁场后,受到洛伦兹力

随速度增大,支持力减小,直到时,物体A将离开斜面,有:

物体A在斜面上运动的全过程中,重力和电场力做正功,滑动摩擦力做负功,洛伦兹力不做功,根据动能定理有:

物体A克服摩擦力做功,机械能转化为内能:

试题详情

例2. 物体置于光滑的斜面上,当斜面固定时,物体沿斜面下滑的加速度为,斜面对物体的弹力为。斜面不固定,且地面也光滑时,物体下滑的加速度为,斜面对物体的弹力为,则下列关系正确的是:

A.   B.

C.   D.

解析:当斜面可动时,对物体来说是相对斜面这个加速参考系在作加速运动,而且物体和参考系的运动方向不在同一条直线上,利用常规的方法难于判断,但是利用矢量三角形法则能轻松获解。

如图4所示,由于重力的大小和方向是确定不变的,斜面弹力的方向也是惟一的,由共点力合成的三角形法则,斜面固定时,加速度方向沿斜面向下,作出的矢量图如实线所示,当斜面也运动时,物体并不沿平行于斜面方向运动,相对于地面的实际运动方向如虚线所示。所以正确选项为B。

评点:在运动学中巧取参考系;在动力学中运用整体法与隔离法;在研究重力势能时选取参考平面;在电学中善用等势面等往往能起到柳暗花明的效果。

试题详情

例1. 相距为20cm的平行金属导轨倾斜放置(见图1),导轨所在平面与水平面的夹角为,现在导轨上放一质量为330g的金属棒ab,它与导轨间动摩擦系数为,整个装置处于磁感应强度B=2T的竖直向上的匀强磁场中,导轨所接电源电动势为15V,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取,为保持金属棒ab处于静止状态,求:

(1)ab中通入的最大电流强度为多少?

(2)ab中通入的最小电流强度为多少?

解析:导体棒ab在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。

(1)ab中通入最大电流强度时受力分析如图2,此时最大静摩擦力沿斜面向下,建立直角坐标系,由ab平衡可知,x方向:

y方向:

由以上各式联立解得:

(2)通入最小电流时,ab受力分析如图3所示,此时静摩擦力,方向沿斜面向上,建立直角坐标系,由平衡有:

x方向:

y方向:

联立两式解得:

评点:此例题考查的知识点有:(1)受力分析--平衡条件的确定;(2)临界条件分析的能力;(3)直流电路知识的应用;(4)正交分解法。

说明:正交分解法是在平行四边形定则的基础上发展起来的,其目的是用代数运算来解决矢量运算。正交分解法在求解不在一条直线上的多个力的合力时显示出了较大的优越性。建立坐标系时,一般选共点力作用线的交点为坐标轴的原点,并尽可能使较多的力落在坐标轴上,这样可以减少需要分解的数目,简化运算过程。

试题详情

2. 如图6甲所示,一根轻绳上端固定在O点,下端拴一个重为G的钢球A,球处于静止状态。现对球施加一个方向向右的外力F,使球缓慢偏移,在移动中的每一刻,都可以认为球处于平衡状态,如果外力F方向始终水平,最大值为2G,试求:

(1)轻绳张力FT的大小取值范围;

(2)在乙图中画出轻绳张力与cosθ的关系图象。

图6

答案:(1)当水平拉力F=0时,轻绳处于竖直位置时,绳子张力最小

当水平拉力F=2G时,绳子张力最大:

因此轻绳的张力范围是:

(2)设在某位置球处于平衡状态,由平衡条件得

所以,得图象如图7。

图7

试题详情

例3:如图4所示,AB、AC为不可伸长的轻绳,小球质量为m=0.4kg。当小车静止时,AC水平,AB与竖直方向夹角为θ=37°,试求小车分别以下列加速度向右匀加速运动时,两绳上的张力FAC、FAB分别为多少。取g=10m/s2。(1);(2)

图4

解析:设绳AC水平且拉力刚好为零时,临界加速度为

根据牛顿第二定律

联立两式并代入数据得

,此时AC绳伸直且有拉力。

根据牛顿第二定律,联立两式并代入数据得

,此时AC绳不能伸直,

AB绳与竖直方向夹角,据牛顿第二定律。联立两式并代入数据得

[模型要点]

①物体受到三个共点力的作用,且两力垂直,物体处于平衡状态(静止或匀速直线运动状态)。

②条件是:物体所受到的合外力为零,即

处理方法:(1)正交分解法:这是平衡条件的最基本的应用方法。其实质就是将各外力间的矢量关系转化为沿两个坐标轴方向上的力分量间的关系,从而变复杂的几何运算为相对简单的代数运算。

具体步骤:①确定研究对象;②分析受力情况;③建立适当坐标;④列出平衡方程。

若研究对象由多个物体组成,优先考虑运用整体法,这样受力情况比较简单,要求出系统内物体间的相互作用力,需要使用隔离法,因此整体法和隔离法常常交替使用。

常用方法:合成(分解)法;多边形(三角形)法;相似形法。

动态平衡的常见问题:①动态分析;②临界问题;③极值分析等。

动态平衡的判断方法:①函数讨论法;②图解法(注意适用条件和不变力);③极限法(注意变化的转折性问题)。

[误区点拨]

(1)受力分析:①重力是否有(微观粒子;粒子做圆周运动);②弹力(弹簧弹力的多解性);③摩擦力(静摩擦力的判断和多解性,和滑动摩擦力Ff并不总等于μmg);④电磁力。

(2)正确作受力分析图,要注意平面问题的思维惯性导致空间问题的漏解。

解题策略:①受力分析;②根据物体受到的合力为0应用矢量运算法(如正交分解、解三角形法等)求解。③对于较复杂的变速问题可利用牛顿运动定律列方程求解。

[模型演练]

1. (2005年联考题)两个相同的小球A和B,质量均为m,用长度相同的两根细线把A、B两球悬挂在水平天花板上的同一点O,并用长度相同的细线连接A、B两小球,然后用一水平方向的力F作用在小球A上,此时三根细线均处于直线状态,且OB细线恰好处于竖直方向,如图5所示,如果不考虑小球的大小,两球均处于静止状态,则力F的大小为(   )

A. 0         B. mg       C.        D.

图5

答案:C

试题详情

例2:物体A质量为,用两根轻绳B、C连接到竖直墙上,在物体A上加一恒力F,若图2中力F、轻绳AB与水平线夹角均为,要使两绳都能绷直,求恒力F的大小。

图2

解析:要使两绳都能绷直,必须,再利用正交分解法作数学讨论。作出A的受力分析图3,由正交分解法的平衡条件:

图3

     ①

     ②

解得              ③

          ④

两绳都绷直,必须

由以上解得F有最大值,解得F有最小值,所以F的取值为

试题详情

例1:图1中重物的质量为m,轻细线AO和BO的A、B端是固定的。平衡时AO是水平的,BO与水平面的夹角为θ。AO的拉力F1和BO的拉力F2的大小是(   )

A.          B.

C.          D.

图1

解析:以“结点”O为研究对象,沿水平、竖直方向建立坐标系,在水平方向有竖直方向有联立求解得BD正确。

思考:若题中三段细绳不可伸长且承受的最大拉力相同,逐渐增加物体的质量m,则最先断的绳是哪根?

试题详情

例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。用两根相同的轻弹簧夹着一个质量为2.0kg的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N(取)

图2

(1)若传感器a的示数为14N、b的示数为6.0N,求此时汽车的加速度大小和方向。

(2)当汽车以怎样的加速度运动时,传感器a的示数为零。

解析:(1)

a1的方向向右或向前。

(2)根据题意可知,当左侧弹簧弹力时,右侧弹簧的弹力

代入数据得,方向向左或向后

[模型要点]

弹簧中的力学问题主要是围绕胡克定律进行的,弹力的大小为变力,因此它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值,我们在处理变速问题时要注意分析物体的动态过程,为了快捷分析,我们可以采用极限方法,但要注意“弹簧可拉可压”的特点而忽略中间突变过程,我们也可以利用弹簧模型的对称性。

[模型演练]

(2005年成都考题)如图3所示,一根轻弹簧上端固定在O点,下端系一个钢球P,球处于静止状态。现对球施加一个方向向右的外力F,吏球缓慢偏移。若外力F方向始终水平,移动中弹簧与竖直方向的夹角且弹簧的伸长量不超过弹性限度,则下面给出弹簧伸长量x与的函数关系图象中,最接近的是(   )

图3

答案:D

试题详情

例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。②中弹簧的左端受大小也为F的拉力作用。③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1l2l3l4依次表示四个弹簧的伸长量,则有(   )

  

①                 ②

③                 ④

图1

A.         B.            C.        D.

解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。由于弹簧弹力与施加在弹簧上的外力F是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。

试题详情


同步练习册答案