0  399986  399994  400000  400004  400010  400012  400016  400022  400024  400030  400036  400040  400042  400046  400052  400054  400060  400064  400066  400070  400072  400076  400078  400080  400081  400082  400084  400085  400086  400088  400090  400094  400096  400100  400102  400106  400112  400114  400120  400124  400126  400130  400136  400142  400144  400150  400154  400156  400162  400166  400172  400180  447090 

1、  以下命题正确的是                           (   ) 

A.都是第一象限角,若,则

B.都是第二象限角,若,则

C.都是第三象限角,若,则

D.都是第四象限角,若,则

试题详情

3. 能量方面:弹性碰撞动能守恒;非弹性碰撞动能不守恒;完全非弹性碰撞能量损失(不能完全恢复原形)最大。

注意:动量守恒定律的验证、分析推理、应用等实验中,不论在平面还是斜面或用其他方式进行,我们都要注意守恒的条件性。

解题原则:(1)碰撞过程中动量守恒原则;(2)碰撞后系统动能不增原则;(3)碰撞后运动状态的合理性原则。

碰撞过程的发生应遵循客观实际。如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或甲反向运动。

解决“追碰”问题大致分两类运动,即数学法(如函数极值法、图象法)和物理方法(参照物变换法、守恒法等)。

[模型演练]

如图2所示,一水平放置的圆环形刚性槽固定在桌面上,槽内嵌放着三个大小相同的刚性小球,它们的质量分别为m1、m2、m3、m2=m3=2m1,小球与槽的两壁刚好接触,而且它们之间的摩擦可以忽略不计。开始时,三球处于槽中I、II、III的位置,彼此间距离相等,m2和m3静止,m1以速度沿槽运动,R为圆环的内半径和小球半径之和,各球之间的碰撞皆为弹性碰撞,求此系统的运动周期T。

图2

答案:先考虑m1与m2的碰撞,令v1、v2分别为它们的碰后速度,由弹性正碰可得:

当m2与m3相碰后,交换速度,m2停在III处,m3的速率运动。因为三段圆弧相等,当m3运动到位置I时,m1恰好返回。它们在I处的碰撞,m3停在I处,m1又以v0的速度顺时针运动。当m1再运动到II时,共经历了一个周期的,则:m1两次由位置I运动到II处的时间为:由位置II运动到III处的时间为:由位置III运动到I的时间为:

所以系统的周期为:

试题详情

2. 碰撞的分类:按能量变化情况可分为弹性碰撞和非弹性碰撞(包括完全非弹性碰撞)。

试题详情

例2. 在核反应堆里,用石墨作减速剂,使铀核裂变所产生的快中子通过与碳核不断的碰撞而被减速。假设中子与碳核发生的是弹性正碰,且碰撞前碳核是静止的。已知碳核的质量近似为中子质量的12倍,中子原来的动能为E0,试求:

(1)经过一次碰撞后中子的能量变为多少?

(2)若E0=1.76MeV,则经过多少次碰撞后,中子的能量才可减少到0.025eV。

解析:按弹性正碰的规律可求出每次碰撞后中子的速度变为多少,对应的动能也就可以求解;在根据每次碰撞前后的动能之比与需要减少到0.025eV与原动能E0的比值关系,取对数求出碰撞次数(必须进位取整)。

(1)弹性正碰遵循动量守恒和能量守恒两个规律。设中子的质量为m,碳核的质量为M,有:

由上述两式整理得:

则经过一次碰撞后中子的动能:

(2)同理可得

……

设经过n次碰撞,中子的动能才会减少至0.025eV,即,解上式得

评点:广义上的碰撞,相互作用力可以是弹力、分子力、电磁力、核力等,因此,碰撞可以是宏观物体间的碰撞,也可以是微观粒子间的碰撞。

说明:《考试大纲》强调“应用数学处理物理问题的能力”,我们在计算中常遇到的是以下一些数学问题:

①等差数列、等比数列,这两类问题的处理方法是先用数学归纳法找出规律,再求解;

②对,当

③对的形式(即),则在时,y有极值

④对的形式,其中均为a、b变量,但恒量(),则可根据不等式性质求极值等。

[模型要点]

在近年高考中,考查的碰撞皆为正碰问题。碰撞是中学物理教学的重点、是历年高考命题的热点,同时它一直是学生学习和高考的难点。碰撞在《考试说明》中作II级要求掌握。

1. 碰撞的特点:(1)作用时间极短,内力远大于外力,总动量总是守恒的;(2)碰撞过程中,总动能不增。因为没有其他形式的能量转化为动能;(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大;(4)碰撞过程中,两物体产生的位移可忽略。

试题详情

例1. 如图1所示,光滑水平面上有大小相同的A、B两球在同一直线上运动,两球质量关系为,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为,则:(   )

图1

A. 左方是A球,碰撞后A、B两球速度大小之比为2:5

B. 左方是A球,碰撞后A、B两球速度大小之比为1:10

C. 右方是A球,碰撞后A、B两球速度大小之比为2:5

D. 右方是A球,碰撞后A、B两球速度大小之比为1:10

解析:题中规定向右为正方向,而AB球的动量均为正,所以AB都向右运动,又,所以,可以判断A球在左方,CD错;碰撞后A的动量变化,根据动量守恒可知,B球的动量变化,所以碰后AB球的动量分别为解得,所以A正确。

评点:动量守恒定律的矢量性即是重点又是难点,解题时要遵循以下原则:先确定正方向,与正方向相同的矢量取正号,与正方向相反的矢量取负号,未知矢量当作正号代入式中,求出的结果若大于零,则与正方向相同,若小于零则与正方向相反,同时也要善于利用动量与动能的关系,但要注意它们的区别。

试题详情

[模型概述]

不在一条直线上的相遇问题在近年高考中也较为常见,如2000年的上海高考中的“估算出飞机速度”,2004年广西高考“观察者看卫星”等,该类问题其实是两种不在一条直线上的运动或不同运动的组合体,在空间上在某一时刻到达同一位置。

[模型讲解]

例. 有一个很大的湖,岸边(可视湖岸为直线)停放着一艘小船,缆绳突然断开,小船被风刮跑,其方向与湖岸成15°角,速度为2.5km/h。同时岸上一人从停放点起追赶小船,已知他在岸上跑的速度为4.0km/h,在水中游的速度为2.0km/h,问此人能否追及小船?

解析:费马原理指出:光总是沿着光程为极小值的路径传播。据此就将一个运动问题通过类比法可转化为光的折射问题。

如图3所示,船沿OP方向被刮跑,设人从O点出发先沿湖岸跑,在A点入水游到OP方向的B点,如果符合光的折射定律,则所用时间最短。

图3

根据折射定律:

解得

在这最短时间内,若船还未到达B点,则人能追上小船,若船已经通过了B点,则人不能追上小船,所以船刚好能到达B点所对应的船速就是小船能被追及的最大船速

根据正弦定理

由以上两式可解得:

此即小船能被人追上的最大速度,而小船实际速度只有2.5km/h,小于,所以人能追上小船。

[模型要点]

从空间的角度来讲,两物体经过一段时间到达同一位置。必然存在两种关系:一是空间关系,不在一条直线的相遇问题要做好几何图形,利用三角形知识解题。二是时间关系。这是解决该类问题的切入点。

[特别说明]

圆周运动中的相遇、追及:同一圆、同方向追击的物体转过的角度时表明两物体相遇或相距最近;反方向转动的物体转过的角度(n=0、1、2、……)时表明两物体相遇或相距最近。不同一圆、同方向追击的物体转过的角度(n=0、1、2、……)时表明两物体相距最近。

[模型演练]

1. 如图4所示,有A、B两颗行星绕同一颗恒星O做圆周运动,旋转方向相同。A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则:(   )

A. 经过时间,两行星再次相距最近

B. 经过时间,两行星再次相距最近

C. 经过时间,两行星相距最远

D. 经过时间,两行星相距最远

答案:BD

图4

试题详情

2. 初速度为零的匀加速运动的物体追同向匀速运动的物体

只要时间足够长,追赶者一定能追上被追赶者发生碰撞。当二者速度相等时有最大距离。若位移相等即追上(同一地点出发)。

在相遇问题中,同向运动的两物体追到即相遇,解决方法同上;相向运动的物体,各自发生的位移绝对值之和为开始时两物体间的距离时即相遇。

[模型演练]

(2005年徐州模考)在一条平直的公路上,乙车以10m/s的速度匀速行驶,甲车在乙车的后面作初速度为15m/s,加速度大小为0.5m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。

答案:设两车速度相等经历的时间为t,则甲车恰能追及乙车时,应有

其中,解得

,则两车等速时也未追及,以后间距会逐渐增大,及两车不相遇。

,则两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大。

,则两车等速时,甲车已运动至乙车前面,以后还能再次相遇,即能相遇两次。(文/孙晋善)

试题详情

1. 匀减速运动的物体追同向匀速运动物体

若二者速度相等时,追赶者仍没有追上被追赶者,则追赶者永远追不上被追赶者,此时二者有最小距离;若二者相遇时,追赶者的速度等于被追赶者的速度,则刚好追上,也是二者避免碰撞的临界条件;若二者相遇时,追赶者的速度仍大于被追赶者的速度,则还有一次被被追赶者追上追赶者的机会,其间速度相等时二者的距离有一个最大值。

试题详情

3. 妙取参照物求解

例3:火车甲正以速度v1向前行驶,司机突然发现前方距甲d处有火车乙正以较小速度v2同向匀速行驶,于是他立即刹车,使火车做匀减速运动而停下。为了使两车不相撞,加速度a应满足什么条件?

解析:设以火车乙为参照物,则甲相对乙做初速为、加速度为a的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d。

即:

故不相撞的条件为

[模型要点]

追及、相遇问题特点:讨论追及、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题。一定要抓住两个关系:即时间关系和位移关系。一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

[特别说明]

试题详情

2. 巧用图象法求解

例2:如图1所示,声源S和观察者A都沿x轴正方向运动,相对于地面的速率分别为。空气中声音传播的速率为,设,空气相对于地面没有流动。

图1

(1)若声源相继发出两个声信号。时间间隔为,请根据发出的这两个声信号从声源传播到观察者的过程。确定观察者接收到这两个声信号的时间间隔

(2)请利用(1)的结果,推导此情形下观察者接收到的声波频率与声源发出的声波频率间的关系式。

解析:作声源S、观察者A、声信号P(P1为首发声信号,P2为再发声信号)的位移-时间图象如图2所示图线的斜率即为它们的速度则有:

图2

两式相减可得:

解得

(2)设声源发出声波的振动周期为T,这样,由以上结论,观察者接收到的声波振动的周期为

由此可得,观察者接收到的声波频率与声源发出声波频率间的关系为

评点:图象分速度图象和位移图象,位移图线的斜率为速度,速度图线的斜率为加速度,速度图线与时间轴所围的“面积”值,等于该段时间内的位移大小。

试题详情


同步练习册答案