12.点P分有向线段所成的比的: ,P内分线段时, ; P外分线段时, . 定比分点坐标公式、中点坐标公式、三角形重心公式:
、、
11.两向量平行、垂直的充要条件 设 =(,), =(,)
①a⊥ba·b=0 ,=+=0;
②(≠)充要条件是:有且只有一个非零实数λ,使=λ。
向量的平行与垂直的坐标运算注意区别,在解题时容易混淆。
10. 向量和的数量积:①·=| |·||cos,其中∈[0,π]为和的夹角。②||cos称为在的方向上的投影。③·的几何意义是:的长度||在的方向上的投影的乘积,是一个实数(可正、可负、也可是零),而不是向量。
④若 =(,), =(x2,), 则
⑤运算律:a· b=b·a, (λa)· b=a·(λb)=λ(a·b), (a+b)·c=a·c+b·c。
⑥和的夹角公式:cos==
⑦||2=x2+y2,或||=⑧| a·b |≤| a |·| b |。
9.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2。(1)不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量。
8. 向量共线定理 向量与非零向量共线(也是平行)的充要条件是:有且只有一个非零实数λ,使=λ。
7.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=;(3)运算定律 λ(μ)=(λμ),(λ+μ)=λ+μ,λ(+)=λ+λ
6.向量的加法、减法:
①求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。②向量的减法向量加上的相反向量,叫做与的差。即: -= + (-);
差向量的意义: = , =, 则=-
③平面向量的坐标运算:若,,则,,。
④向量加法的交换律:+=+;向量加法的结合律:(+) +=+ (+)
5.相等向量:长度相等且方向相同的向量叫相等向量.
4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行.向量、、平行,记作∥∥.共线向量与平行向量关系:平行向量就是共线向量.
3.零向量、单位向量:①长度为0的向量叫零向量,记为; ②长度为1个单位长度的向量,叫单位向量.(注:就是单位向量)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com