0  400789  400797  400803  400807  400813  400815  400819  400825  400827  400833  400839  400843  400845  400849  400855  400857  400863  400867  400869  400873  400875  400879  400881  400883  400884  400885  400887  400888  400889  400891  400893  400897  400899  400903  400905  400909  400915  400917  400923  400927  400929  400933  400939  400945  400947  400953  400957  400959  400965  400969  400975  400983  447090 

在进行数列二轮复习时,建议可以具体从

以下几个方面着手:

1.运用基本量思想(方程思想)解决有关问题;

试题详情

(二)2009年高考预测

1. 数列中的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”。但实际上,从近两年各地高考试题来看,是加大了对“递推公式”的考查。

2. 探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.

3. 等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题。

4. 求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.

5. 将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所在的分值来看,一年比一年多,而且多注重能力的考查.

6. 有关数列与函数、数列与不等式、数列与概率等问题既是考查的重点,也是考查的难点。今后在这方面还会体现的更突出。

7、数列与程序框图的综合题应引起高度重视。

试题详情

(一)方法总结

1. 求数列的通项通常有两种题型:一是根据所给的一列数,通过观察求通项;一是根据递推关系式求通项。

2. 数列中的不等式问题是高考的难点热点问题,对不等式的证明有比较法、放缩,放缩通常有化归等比数列和可裂项的形式。

3. 数列是特殊的函数,而函数又是高中数学的一条主线,所以数列这一部分是容易命制多个知识点交融的题,这应是命题的一个方向。

试题详情

考点一:等差、等比数列的概念与性质

例1. (2008深圳模拟)已知数列

(1)求数列的通项公式;  (2)求数列

解:(1)当;、

   当

  (2)令

   当

     当

        

综上, 

 点评:本题考查了数列的前n项与数列的通项公式之间的关系,特别要注意n=1时情况,在解题时经常会忘记。第二问要分情况讨论,体现了分类讨论的数学思想.

例2、(2008广东双合中学)已知等差数列的前n项和为,且. 数列是等比数列,(其中).

  (I)求数列的通项公式;(II)记.

解:(I)公差为d,

.

    设等比数列的公比为,     

    .

  (II)  

     

作差:

   

 

   . 

点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。

考点二:求数列的通项与求和

例3.(2008江苏)将全体正整数排成一个三角形数阵:

1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
………………
 
 

按照以上排列的规律,第行()从左向右的第3个数为     

解:前n-1 行共有正整数1+2+…+(n-1)个,即个,因此第n 行第3 个数是全体正整数中第+3个,即为

点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力。

例4.(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第个图形包含个“福娃迎迎”,则  ;____

解:第1个图个数:1

第2个图个数:1+3+1

第3个图个数:1+3+5+3+1

第4个图个数:1+3+5+7+5+3+1

第5个图个数:1+3+5+7+9+7+5+3+1=

所以,f(5)=41

f(2)-f(1)=4 ,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16

点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体现了转化与化归的数学思想。

考点三:数列与不等式的联系

例5.(2009届高三湖南益阳)已知等比数列的首项为,公比满足。又已知成等差数列。

  (1)求数列的通项 

  (2)令,求证:对于任意,都有

(1)解:∵  ∴  ∴

   ∵   ∴   ∴ 

(2)证明:∵  ,

  ∴

点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(2)问,采用裂项相消法法,求出数列之和,由n的范围证出不等式。

例6、(2008辽宁理) 在数列中,a1=2,b1=4,且成等差数列,成等比数列()

(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测的通项公式,并证明你的结论;

(Ⅱ)证明:

解:(Ⅰ)由条件得由此可得

猜测

用数学归纳法证明:

①当n=1时,由上可得结论成立.

②假设当n=k时,结论成立,即

那么当n=k+1时,

所以当n=k+1时,结论也成立.

由①②,可知对一切正整数都成立.

(Ⅱ)

n≥2时,由(Ⅰ)知

综上,原不等式成立.

点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.

例7. (2008安徽理)设数列满足为实数

(Ⅰ)证明:对任意成立的充分必要条件是

(Ⅱ)设,证明:;

(Ⅲ)设,证明:

解: (1) 必要性 :

         又  ,即

充分性 :设  ,对用数学归纳法证明

     当时,.假设

     则,且

,由数学归纳法知对所有成立

   (2) 设 ,当时,,结论成立

     当 时,

     

      ,由(1)知,所以  且  

     

     

     

(3) 设 ,当时,,结论成立

 当时,由(2)知

 

点评:本题是数列、充要条件、数学归纳法的知识交汇题,属于难题,复习时应引起注意,加强训练。

考点四:数列与函数、概率等的联系

例题8.. (2008福建理) 已知函数.

 (Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;

 (Ⅱ)求函数f(x)在区间(a-1,a)内的极值.

   (Ⅰ)证明:因为所以′(x)=x2+2x,

   由点在函数y=f′(x)的图象上,

   又所以

   所以,又因为′(n)=n2+2n,所以,

   故点也在函数y=f′(x)的图象上.

(Ⅱ)解:,

.

当x变化时,的变化情况如下表:

x
(-∞,-2)
-2
(-2,0)
0
(0,+∞)
f′(x)
+
0
-
0
+
f(x)

极大值

极小值

注意到,从而

①当,此时无极小值;

②当的极小值为,此时无极大值;

③当既无极大值又无极小值.

点评:本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.

 例9 、(2007江西理)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数

列的概率为( )

 A.        B.        C.         D.

  解:一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或-1的有8个;(3)公差为2或-2的有4个,共有18个,

成等差数列的概率为,选B

点评:本题是以数列和概率的背景出现,题型新颖而别开生面,有采取分类讨论,分类时要做到不遗漏,不重复。

考点五:数列与程序框图的联系

例10、(2009广州天河区模拟)根据如图所示的程序框图,将输出的x、y值依次分别记为

(Ⅰ)求数列的通项公式

(Ⅱ)写出y1,y2,y3,y4,由此猜想出数列{yn};

的一个通项公式yn,并证明你的结论;

(Ⅲ)求

解:(Ⅰ)由框图,知数列

(Ⅱ)y1=2,y2=8,y3=26,y4=80.

由此,猜想

证明:由框图,知数列{yn}中,yn+1=3yn+2

  

∴数列{yn+1}是以3为首项,3为公比的等比数列。

+1=3·3n-1=3n

=3n-1() 

(Ⅲ)zn=

=1×(3-1)+3×(32-1)+…+(2n-1)(3n-1)

=1×3+3×32+…+(2n-1)·3n-[1+3+…+(2n-1)]

记Sn=1×3+3×32+…+(2n-1)·3n,①       

则3Sn=1×32+3×33+…+(2n-1)×3n+1  ②  

①-②,得-2Sn=3+2·32+2·33+…+2·3n-(2n-1)·3n+1

=2(3+32+…+3n)-3-(2n-1)·3n+1

=2×=

       

又1+3+…+(2n-1)=n2

.

 点评:程序框图与数列的联系是新课标背景下的新鲜事物,因为程序框图中循环,与数列的各项一一对应,所以,这方面的内容是命题的新方向,应引起重视。

试题详情

2.等差数列和等比数列的比较

 (1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.

 (2)递推公式:

 (3)通项公式:

 (4)性质

 等差数列的主要性质:

 ①单调性:时为递增数列,时为递减数列,时为常数列.

 ②若,则.特别地,当时,有

 ③

 ④成等差数列.

 等比数列的主要性质:

 ①单调性:当时,为递增数列;当,或时,为递减数列;当时,为摆动数列;当时,为常数列.

 ②若,则.特别地,若,则

 ③

 ④,…,当时为等比数列;当时,若为偶数,不是等比数列.若为奇数,是公比为的等比数列.

试题详情

1.数列的概念及表示方法

 (1)定义:按照一定顺序排列着的一列数.

 (2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.

 (3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.

 (4)的关系:

试题详情

4、注意复习求线性回归方程的方法,回归分析方法,独立性检验的方法及其应用问题。

试题详情

3. 注意体会解决概率应用题的思考方法,正向思考时要善于将较复杂的问题进行分解,解决有些问题时还要学会运用逆向思考的方法.

试题详情

2. 复习中,对于排列组合应用题,注意从不同的角度去进行求解,以开阔思维,提高解题能力.

试题详情

1. 对于一些容易混淆的概念,如排列与排列数、组合与组合数、排列与组合、二项式系数与二项展开式中各项的系数等,应注意弄清它们之间的联系与区别.

试题详情


同步练习册答案