19. 如图,在棱长为1的正方体中,AP=BQ=b(0<b<1),截面PQEF∥,截面PQGH∥.
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,
并求出这个值;
(Ⅲ)若,求与平面PQEF所成角的正弦值.
18. 甲、乙、丙3人投篮,投进的概率分别是, , .现3人各投篮1次,求:
(Ⅰ)3人都投进的概率;
(Ⅱ)3人中恰有2人投进的概率.
17.设锐角三角形的内角的对边分别为,.
(Ⅰ)求的大小;
(Ⅱ)求的取值范围.
19. 如图,已知点P在正方体ABCD-A1B1C1D1的对角线BD1上,∠PDA=60°。
(1)求DP与CC1所成角的大小;
(2)求DP与平面AA1D1D所成角的大小。
18. 盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:
(Ⅰ)抽出的3张卡片上最大的数字是4的概率;
(Ⅱ)抽出的3张中有2张卡片上的数字是3的概念;
(Ⅲ)抽出的3张卡片上的数字互不相同的概率.
17. 设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1-且x∈[-,],求x;
(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.
19. 如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥CD,AD=2AB=2BC=2,O为AD中点。
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)求点A到平面PCD的距离
18. 某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。
(I)求取6件产品中有1件产品是二等品的概率。
(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率。
17.已知函数.求:
(I)函数的最小正周期;
(II)函数的单调增区间.
19. 如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点。
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com