5.等比数列的性质:
(1)当时,则有,特别地,当时,则有.如(1)在等比数列中,,公比q是整数,则=___(答:512);(2)各项均为正数的等比数列中,若,则 (答:10)。
(2) 若是等比数列,则、、成等比数列;若成等比数列,则、成等比数列; 若是等比数列,且公比,则数列 ,…也是等比数列。当,且为偶数时,数列 ,…是常数数列0,它不是等比数列. 如(1)已知且,设数列满足,且,则 . (答:);(2)在等比数列中,为其前n项和,若,则的值为______(答:40)
(3)若,则为递增数列;若, 则为递减数列;若 ,则为递减数列;若, 则为递增数列;若,则为摆动数列;若,则为常数列.
(4) 当时,,这里,但,这是等比数列前项和公式的一个特征,据此很容易根据,判断数列是否为等比数列。如若是等比数列,且,则= (答:-1)
(5) .如设等比数列的公比为,前项和为,若成等差数列,则的值为_____(答:-2)
(6) 在等比数列中,当项数为偶数时,;项数为奇数时,.
(7)如果数列既成等差数列又成等比数列,那么数列是非零常数数列,故常数数列仅是此数列既成等差数列又成等比数列的必要非充分条件。如设数列的前项和为(), 关于数列有下列三个命题:①若,则既是等差数列又是等比数列;②若,则是等差数列;③若,则是等比数列。这些命题中,真命题的序号是 (答:②③)
4.等比数列的有关概念:
(1)等比数列的判断方法:定义法,其中或
。如(1)一个等比数列{}共有项,奇数项之积为100,偶数项之积为120,则为____(答:);(2)数列中,=4+1 ()且=1,若 ,求证:数列{}是等比数列。
(2)等比数列的通项:或。如设等比数列中,,,前项和=126,求和公比. (答:,或2)
(3)等比数列的前和:当时,;当时,
。如(1)等比数列中,=2,S99=77,求(答:44);(2)的值为__________(答:2046);
特别提醒:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。
(4)等比中项:若成等比数列,那么A叫做与的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个。如已知两个正数的等差中项为A,等比中项为B,则A与B的大小关系为______(答:A>B)
提醒:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,…(公比为);但偶数个数成等比时,不能设为…,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)
3.等差数列的性质:
(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.
(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
(3)当时,则有,特别地,当时,则有.如(1)等差数列中,,则=____(答:27);(2)在等差数列中,,且,是其前项和,则A、都小于0,都大于0 B、都小于0,都大于0 C、都小于0,都大于0 D、都小于0,都大于0 (答:B)
(4) 若、是等差数列,则、 (、是非零常数)、、 ,…也成等差数列,而成等比数列;若是等比数列,且,则是等差数列. 如等差数列的前n项和为25,前2n项和为100,则它的前3n和为 。(答:225)
(5)在等差数列中,当项数为偶数时,;项数为奇数时,,(这里即);。如(1)在等差数列中,S11=22,则=______(答:2);(2)项数为奇数的等差数列中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).
(6)若等差数列、的前和分别为、,且,则.如设{}与{}是两个等差数列,它们的前项和分别为和,若,那么___________(答:)
(7)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如(1)等差数列中,,,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若是等差数列,首项,
,则使前n项和成立的最大正整数n是 (答:4006)
(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究.
2.等差数列的有关概念:
(1)等差数列的判断方法:定义法或。如设是等差数列,求证:以bn= 为通项公式的数列为等差数列。
(2)等差数列的通项:或。如(1)等差数列中,,,则通项 (答:);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:)
(3)等差数列的前和:,。如(1)数列 中,,,前n项和,则=_,=_(答:,);(2)已知数列 的前n项和,求数列的前项和(答:).
(4)等差中项:若成等差数列,则A叫做与的等差中项,且。
提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,…(公差为);偶数个数成等差,可设为…,,…(公差为2)
1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式。如(1)已知,则在数列的最大项为__(答:);(2)数列的通项为,其中均为正数,则与的大小关系为___(答:);(3)已知数列中,,且是递增数列,求实数的取值范围(答:);(4)一给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是 ()(答:A)
A B C D
1、直抒胸臆:直接运用抒情与议论的表达方式来抒发情感
2.运用具体描写手段:语言描写、动作描写、神态描写、外貌描写、心理描写、细节描写
⒊运用修辞手法来写人:比喻对比夸张比拟借代双关反问设问、反问、反语;
⒋运用表现手法来写:衬托对比渲染烘托象征、铺陈,白描。
第三种:抒情方式
5.从观察的层次来写:远看与近观结合,仰视平视与俯视结合;空间的上下结合,高低结合。
⒍从调动感觉的角度来写:视觉(形和色),听觉(声),嗅觉(气味),味觉,触觉;或通感。
第二种:描写人物的方法
⒈从直接与间接的角度看,方法有:正面和侧面描写,虚写(想象联想)与实写;
4.从景物的动静角度来写:动景静景结合,或以动写静,以静写动;(高考常考)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com