7.””是”方程表示焦点在y轴上的椭圆”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D) 既不充分也不必要条件
答案:C.
解析:将方程转化为 , 根据椭圆的定义,要使焦点在y轴上必须满足所以,故选C.
6.若,则的值为
(A)2 (B)0 (C) (D)
答案:C.
解析:由题意容易发现,则
, 同理可以得出,………
亦即前2008项和为0, 则原式== 故选C.
5.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为
(A)9 (B)18 (C)27 (D) 36
答案B.
解析:由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.
4.过原点且倾斜角为的直线被圆学所截得的弦长为科网
(A) (B)2 (C)(D)2
答案:D.
解析:,圆心到直线的距离,由垂径定理知所求弦长为 故选D.
3.函数的反函数为
(A) (B)
(C) (D)学科
答案:D.
2.若,则的值为
(A)0 (B) (C)1 (D)
答案:B.
解析: 利用齐次分式的意义将分子分母同时除以得,
故选B.
1.设不等式的解集为M,函数的定义域为N,则为
(A)[0,1) (B)(0,1) (C)[0,1] (D)(-1,0]
答案:A.
解析:,则,故选A.
21.(本小题满分13分)
对于数列,若存在常数M>0,对任意的,恒有
,
则称数列为数列.
(Ⅰ)首项为1,公比为的等比数列是否为B-数列?请说明理由;
(Ⅱ)设是数列的前n项和.给出下列两组判断:
A组:①数列是B-数列, ②数列不是B-数列;
B组:③数列是B-数列, ④数列不是B-数列.
请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题.
判断所给命题的真假,并证明你的结论;
(Ⅲ)若数列是B-数列,证明:数列也是B-数列。
解: (Ⅰ)设满足题设的等比数列为,则.于是
==
所以首项为1,公比为的等比数列是B-数列 .
(Ⅱ)命题1:若数列是B-数列,则数列是B-数列.此命题为假命题.
事实上设=1,,易知数列是B-数列,但=n,
.
由n的任意性知,数列不是B-数列。
命题2:若数列是B-数列,则数列不是B-数列。此命题为真命题。
事实上,因为数列是B-数列,所以存在正数M,对任意的,有
,
即.于是
,
所以数列是B-数列。
(注:按题中要求组成其它命题解答时,仿上述解法)
(Ⅲ)若数列是B-数列,则存在正数M,对任意的有
.
因为
.
记,则有
.
因此.
故数列是B-数列.
20.(本小题满分13分)
已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点
为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。
解: (Ⅰ)依题意,设椭圆C的方程为焦距为,
由题设条件知, 所以
故椭圆C的方程为 .
(Ⅱ)椭圆C的左准线方程为所以点P的坐标,
显然直线的斜率存在,所以直线的方程为。
如图,设点M,N的坐标分别为线段MN的中点为G,
由得. ……①
由解得. ……②
因为是方程①的两根,所以,于是
=, .
因为,所以点G不可能在轴的右边,
又直线,方程分别为
所以点在正方形内(包括边界)的充要条件为
即 亦即
解得,此时②也成立.
故直线斜率的取值范围是
19.(本小题满分13分)
已知函数的导函数的图象关于直线x=2对称.
(Ⅰ)求b的值;
(Ⅱ)若在处取得最小值,记此极小值为,求的定义域和值域。
解: (Ⅰ).因为函数的图象关于直线x=2对称,
所以,于是
(Ⅱ)由(Ⅰ)知,,.
(ⅰ)当c 12时,,此时无极值。
(ii)当c<12时,有两个互异实根,.不妨设<,则<2<.
当x<时,, 在区间内为增函数;
当<x<时,,在区间内为减函数;
当时,,在区间内为增函数.
所以在处取极大值,在处取极小值.
因此,当且仅当时,函数在处存在唯一极小值,所以.
于是的定义域为.由 得.
于是 .
当时,所以函数
在区间内是减函数,故的值域为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com