0  402754  402762  402768  402772  402778  402780  402784  402790  402792  402798  402804  402808  402810  402814  402820  402822  402828  402832  402834  402838  402840  402844  402846  402848  402849  402850  402852  402853  402854  402856  402858  402862  402864  402868  402870  402874  402880  402882  402888  402892  402894  402898  402904  402910  402912  402918  402922  402924  402930  402934  402940  402948  447090 

1、对于给定的振动系统,振动的动能由振动的速度决定,振动的势能由振动的位移决定,振动的能量就是振动系统在某个状态下的动能和势能的总和.

试题详情

5、小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。

试题详情

4、单摆的周期:当 l、g一定,则周期为定值 T=2π,与小球是否运动无关.与摆球质量m、振幅A都无关。其中摆长l指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。要区分摆长和摆线长。

试题详情

3、单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。

试题详情

2、单摆振动可看做简谐运动的条件是:在同一竖直面内摆动,摆角θ<100.  

试题详情

1、单摆:在细线的一端挂上一个小球,另一端固定在悬点上,如果线的伸缩和质量可以忽略,球的直径比线长短得多,这样的装置叫做单摆.

这是一种理想化的模型,一般情况下细线(杆)下接一个小球的装置都可作为单摆.

试题详情

3、利用振动图像分析简谐振动

[例7]一弹簧振子沿x轴振动,振幅为4 cm. 振子的平衡位置位于x袖上的0点.图甲中的a ,b,c,d为四个不同的振动状态:黑点表示振子的位置,黑点上箭头表示运动的方向.图乙给出的①②③④四条振动图线,

可用于表示振子的振动图象是(  AD  )

A.若规定状态a时t=0,则图象为①

B.若规定状态b时t=0,则图象为②

C.若规定状态c时t=0,则图象为③

D.若规定状态d时t=0,则图象为④

解析:若t=0,质点处于a状态,则此时x=+3 cm运动方向为正方向,只有图①对;若t=0时质点处于b状态,此时x=+2 cm,运动方向为负方向,②图不对;若取处于C状态时t=0,此时x=-2 cm,运动方向为负方向,故图③不正确;取状态d为t=0时,图④刚好符合,故A,D正确.

点评: 对振动图象的理解和掌握要密切联系实际,既能根据实际振动画出振动图象;又能根据振动图象还原成一个具体的振动,达到此种境界,就可熟练地用图象分析解决振动

试题展示

      单摆、振动中的能量

知识简析 一、单摆

试题详情

2、弹簧振子模型

[例5]如图所示,质量为m的物块A放在木板B上,而B固定在竖直的轻弹簧上。若使 A随 B一起沿竖直方向做简谐运动而始终不脱离,则充当 A的回复力的是     。当A的速度达到最大时,A对B的压力大小为         

解析:根据题意,只要在最高点A、B仍能相对静止,则它们就会始终不脱离。而在最高点,外界对A所提供的最大回复力为mg,即最大加速度amax=g,故A、B不脱离的条件是a≤g,可见,在振动过程中,是A的重力和B对A的支持力的合力充当回复力。

   因为A在系统的平衡位置时,速度最大,此时A所受重力与B对它的支持力的合力为零,由牛顿第三定律可知,a对B的压力大小等于其重力mg。

拓展:①要使不脱离B,其最大振幅为多少?可仍以最高点为例,设弹簧的劲度系数为k,B的质量为mB,因为mg=mamax,振幅最大时,a才有最大值,,是由kAmax=(m+mB)g,得Amax= m+mB)g/k。

②运动至最低点时A对B的最大压力是多少?③若让A从离静止的B上方h处自由下落与B相碰一起运动,则在最低点的加速度一定满足a>g,为什么?

[例6]在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由.②判断m与M的最终运动状态是静止、匀速运动还是相对往复的运动?

[解析]①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。设此时物体在O点左侧x处,则kx=μmg。所以,当x=μmg/k时,小车达最大速度.

   ②小车向左运动达最大速度的时刻,物体向右运动也达最大速度,这时物体还会继续向右运动,但它的运动速度将减小,即小车和物体都在做振动.由于摩擦力的存在,小车和物体的振动幅度必定不断减小,设两物体最终有一共同速度v,因两物体组成的系统动量守恒,且初始状态的总动量为零,故v=0,即m与M的最终运动状态是静止的  

试题详情

4.应用:①可直观地读取振幅A、周期T以及各时刻的位移x;

②判定各时刻的回复力、速度、加速度方向;

③判定某段时间内位移、回复力、加速度、速度、动能、势能、等物理量的变化情况

注意:①振动图象不是质点的运动轨迹.

②计时点一旦确定,形状不变,仅随时间向后延伸。

③简谐运动图像的具体形状跟计时起点及正方向的规定有关。

规律方法1、简谐运动的特点

[例4](1995年全国)一弹簧振子作简谐振动,周期为T(     )

   A.若t时刻和(t+Δt)时刻振子运动位移的大小相等、方向相同,则Δt一定等于T的整数倍

   B.若t时刻和(t+Δt)时刻振子运动速度的大小相等、方向相反,则上t一定等于T/2的整数倍

   C.若Δt=T,则在 t时刻和(t+Δt)时刻振子运动的加速度一定相等

   D.若Δt=T/2,则在t时刻和(t十Δt)时刻弹簧的长度一定相等

解析:做简谐运动时,振子由平衡位置到最大位移,再由最大位移回到平衡位置,两次经过同一点时,它们的位移大小相等、方向相同,其时间间隔并不等于周期的整数倍,选项A错误。同理在振子由指向最大位移,到反向最大位移的过程中,速度大小相等、方向相反的位里之间的时间间隔小于T/2,选项B错误。相差T/2的两个时刻,弹黄的长度可能相等,振子从平衡位置开始振动、再回到平衡位置时,弹簧长度相等、也可能不相等、选项D错误。若Δt=T,则根据周期性,该振子所有的物理量应和t时刻都相同,a就一定相等,所以,选项C正确。

   本题也可通过振动图像分析出结果,请你自己尝试一下。  

[例]如图所示,一弹簧振子在光滑水平面内做简谐振动,O为平衡位置,A,B为最大位移处,当振子由A点从静止开始振动,测得第二次经过平衡位置所用时间为t秒,在O点上方C处有一个小球,现使振子由A点,小球由C点同时从静止释放,它们恰好到O点处相碰,试求小球所在C点的高度H是多少?

解析:由已知振子从A点开始运动,第一次经过O点的时间是1/4周期,第二次经过O点是3/4周期,设其周期T,所以有:t=3T/4,T=4t/3;

   振子第一次到O点的时间为;振子第二次到点的时间为;振子第三次到O点的时间为……第n次到O点的时间为(n=0.1,2,3……)

C处小球欲与振子相碰,它和振子运动的时间应该是相等的;小球做自由落体运动,所以有

试题详情


同步练习册答案