0  402945  402953  402959  402963  402969  402971  402975  402981  402983  402989  402995  402999  403001  403005  403011  403013  403019  403023  403025  403029  403031  403035  403037  403039  403040  403041  403043  403044  403045  403047  403049  403053  403055  403059  403061  403065  403071  403073  403079  403083  403085  403089  403095  403101  403103  403109  403113  403115  403121  403125  403131  403139  447090 

2.变量的相关性

①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;

②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

试题详情

1.用样本估计总体

①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会他们各自的特点;

②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差;

③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;

④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性;

⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异;

⑥形成对数据处理过程进行初步评价的意识。

试题详情

常用的抽样方法及它们之间的联系和区别:

类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
 
总体中的个数比较少
系统抽样
将总体均匀分成几个部分,按照事先确定的规则在各部分抽取
在起始部分抽样时采用简单随机抽样
总体中的个数比较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单抽样或者相同抽样
总体由差异明显的几部分组成

不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样。

随机抽样、系统抽样、分层抽样都是不放回抽样。

试题详情

题型1:统计概念及简单随机抽样

例1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是(  )

A.1000名运动员是总体                 B.每个运动员是个体

C.抽取的100名运动员是样本            D.样本容量是100

解析:这个问题我们研究的是运动员的年龄情况,因此应选D。

答案:D

点评:该题属于易错题,一定要区分开总体与总体容量、样本与样本容量等概念。

例2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。问:① 总体中的某一个体在第一次抽取时被抽到的概率是多少?② 个体不是在第1次未被抽到,而是在第2次被抽到的概率是多少?③ 在整个抽样过程中,个体被抽到的概率是多少?

解析:(1),(2),(3)

点评:由问题(1)的解答,出示简单随机抽样的定义,问题( 2 )是本讲难点。基于此,简单随机抽样体现了抽样的客观性与公平性。

题型2:系统抽样

例3.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本。

解析:(1)随机地将这1003个个体编号为1,2,3,…,1003.

(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.

点评:总体中的每个个体被剔除的概率相等,也就是每个个体不被剔除的概率相等.采用系统抽样时每个个体被抽取的概率都是,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是

例4.(2004年福建,15)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是___________.

剖析:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.

m=6,k=7,m+k=13,∴在第7小组中抽取的号码是63.

答案:63

点评:当总体中个体个数较多而差异又不大时可采用系统抽样。采用系统抽样在每小组内抽取时应按规则进行。

题型3:分层抽样

例5.(2006湖北文,19)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。试确定

(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;

(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。

解析:(Ⅰ)设登山组人数为,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有,解得b=50%,c=10%.

故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、

50%、10%。

(Ⅱ)游泳组中,抽取的青年人数为(人);

抽取的中年人数为50%=75(人);

抽取的老年人数为10%=15(人)。

点评:本小题主要考查分层抽样的概念和运算,以及运用统计知识解决实际问题的能力。

例6.(2006四川文,5)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生(  )

A.30人,30人,30人   B.30人,45人,15人

C.20人,30人,10人   D.30人,50人,10人

解析:B;

点评:根据样本容量和总体容量确定抽样比,最终得到每层中学生人数。

题型4:综合问题

例7.(1)(2004年湖南,5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是

A.分层抽样法,系统抽样法              B.分层抽样法,简单随机抽样法

C.系统抽样法,分层抽样法              D.简单随机抽样法,分层抽样法

分析:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.

依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B.

答案:B

(2)(2005湖北卷理第11题,文第12题)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:

    ①7,34,61,88,115,142,169,196,223,250;

    ②5,9,100,107,111,121,180,195,200,265;

    ③11,38,65,92,119,146,173,200,227,254;

    ④30,57,84,111,138,165,192,219,246,270;

    关于上述样本的下列结论中,正确的是   (   )                    

    A.②、③都不能为系统抽样          B.②、④都不能为分层抽样

C.①、④都可能为系统抽样   D.①、③都可能为分层抽样

解析:D。

点评:采用什么样的抽样方法要依据研究的总体中的个体情况来定。

试题详情

3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。

结论:

(1)分层抽样是等概率抽样,它也是公平的。用分层抽样从个体数为N的总体中抽取一个容量为的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于

(2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践的应用更为广泛。

试题详情

2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。

系统抽样的步骤可概括为:

(1)将总体中的个体编号。采用随机的方式将总体中的个体编号;

(2)将整个的编号进行分段。为将整个的编号进行分段,要确定分段的间隔.当是整数时,;当不是整数时,通过从总体中剔除一些个体使剩下的个体数N´能被整除,这时

(3)确定起始的个体编号。在第1段用简单随机抽样确定起始的个体边号

(4)抽取样本。按照先确定的规则(常将加上间隔)抽取样本:

试题详情

三种常用抽样方法:

1.简单随机抽样:设一个总体的个数为N。如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。实现简单随机抽样,常用抽签法和随机数表法。

(1)抽签法

制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;

抽签:抽签时,每次从中抽出1个号签,连续抽取次;

成样:对应号签就得到一个容量为的样本。

抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。

(2)随机数表法

编号:对总体进行编号,保证位数一致;

数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

成样:对应号签就得到一个容量为的样本。

结论:

  ① 用简单随机抽样,从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为

② 基于此,简单随机抽样体现了抽样的客观性与公平性;

③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。

试题详情

统计是在初中数学统计初步的深化和扩展,本讲的主要内容是随机抽样的方法在总体中抽取样本。

预测2007年高考对本讲的考察是:

(1)以基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础的知识、应用基础知识、解决实际问题的能力;

(2)热点是随机抽样方法中的分层抽样、系统抽样方法。

试题详情

4.能通过试验、查阅资料、设计调查问卷等方法收集数据。

试题详情

3.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;

试题详情


同步练习册答案