2.热点问题是三角函数的图象和性质,特别是y=Asin(wx+φ)的图象及其变换;
近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
预测07年高考对本讲内容的考察为:
1.题型为1道选择题(求值或图象变换),1道解答题(求值或图像变换);
3.结合具体实例,了解y=Asin(wx+φ)的实际意义;能借助计算器或计算机画出y=Asin(wx+φ)的图像,观察参数A,w,φ对函数图像变化的影响。
2.借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最小值、图像与x轴交点等);
1.能画出y=sin x, y=cos x, y=tan x的图像,了解三角函数的周期性;
4.运用同角三角函数关系式化简、证明
常用的变形措施有:大角化小,切割化弦等,应用 “弦化切”的技巧,即分子、分母同除以一个不为零的,得到一个只含的教简单的三角函数式。
3.任意角的概念的意义,任意角的三角函数的定义,同角间的三角函数基本关系、诱导公式由于本重点是任意角的三角函数角的基础,因而三学习本节内容时要注意如下几点:(1)熟练地掌握常用的方法与技巧,在使用三角代换求解有关问题时要注意有关范围的限制;(2)要注意差异分析,又要活用公式,要善于瞄准解题目标进行有效的变形,其解题一般思维模式为:发现差异,寻找联系,合理转化。
只有这样才能在高考中夺得高分。三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,,。所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数。
2.α、、2α之间的关系。
若α终边在第一象限则终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。
若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
1.几种终边在特殊位置时对应角的集合为:
角的终边所在位置 |
角的集合 |
X轴正半轴 |
|
Y轴正半轴 |
|
X轴负半轴 |
|
Y轴负半轴 |
|
X轴 |
|
Y轴 |
|
坐标轴 |
|
题型1:象限角
例1.已知角;(1)在区间内找出所有与角有相同终边的角;(2)集合,那么两集合的关系是什么?
解析:(1)所有与角有相同终边的角可表示为:,
则令 ,
得
解得
从而或
代回或
(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的集合,从而:。
点评:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论。
例2.(2001全国理,1)若sinθcosθ>0,则θ在( )
A.第一、二象限 B.第一、三象限
C.第一、四象限 D.第二、四象限
解析:答案:B;∵sinθcosθ>0,∴sinθ、cosθ同号。
当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B。
例3.(2001春季北京、安徽,8)若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
答案:B
解析:∵A、B是锐角三角形的两个内角,∴A+B>90°,∴B>90°-A,∴cosB<sinA,sinB>cosA,故选B。
例4.已知“是第三象限角,则是第几象限角?
解法一:因为是第三象限角,所以,
∴,
∴当k=3m(m∈Z)时,为第一象限角;
当k= 3m+1(m∈Z)时,为第三象限角,
当k= 3m+2(m∈Z)时,为第四象限角,
故为第一、三、四象限角。
解法二:把各象限均分3等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅲ象限的符号所表示的区域即为的终边所在的区域。
由图可知,是第一、三、四象限角。
点评:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表示的区域即为 (n∈N*)的终边所在的区域。
题型2:三角函数定义
例5.已知角的终边过点,求的四个三角函数值。
解析:因为过点,所以,。
当;
,。
当,;。
例6.已知角的终边上一点,且,求的值。
解析:由题设知,,所以,
得,
从而,
解得或。
当时,, ;
当时,, ;
当时,, 。
题型3:诱导公式
例7.(2001全国文,1)tan300°+的值是( )
A.1+ B.1- C.-1- D.-1+
解析:答案:B tan300°+=tan(360°-60°)+=-tan60°+=1-。
例8.化简:
(1);
(2)。
解析:(1)原式;
(2)①当时,原式。
②当时,原式。
点评:关键抓住题中的整数是表示的整数倍与公式一中的整数有区别,所以必须把分成奇数和偶数两种类型,分别加以讨论。
题型4:同角三角函数的基本关系式
例9.已知,试确定使等式成立的角的集合。
解析:∵,
===。
又∵,
∴,
即得或
所以,角的集合为:或。
例10.(1)证明:;
(2)求证:。
解析:(1)分析:证明此恒等式可采取常用方法,也可以运用分析法,即要证,只要证A·D=B·C,从而将分式化为整式
证法一:右边=
=
=
证法二:要证等式,即为
只要证 2()()=
即证:
,
即1=,显然成立,
故原式得证。
点评:在进行三角函数的化简和三角恒等式的证明时,需要仔细观察题目的特征,灵活、恰当地选择公式,利用倒数关系比常规的“化切为弦”要简洁得多。(2)同角三角函数的基本关系式有三种,即平方关系、商的关系、倒数关系。
(2)证法一:由题义知,所以。
∴左边=右边。
∴原式成立。
证法二:由题义知,所以。
又∵,
∴。
证法三:由题义知,所以。
,
∴。
点评:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com