0  402971  402979  402985  402989  402995  402997  403001  403007  403009  403015  403021  403025  403027  403031  403037  403039  403045  403049  403051  403055  403057  403061  403063  403065  403066  403067  403069  403070  403071  403073  403075  403079  403081  403085  403087  403091  403097  403099  403105  403109  403111  403115  403121  403127  403129  403135  403139  403141  403147  403151  403157  403165  447090 

2.考生应立足基础知识和基本方法的复习,以课本题目为主,以熟练技能,巩固概念为目标。

试题详情

1.本讲内容在高考中以填空题和解答题为主

主要考查:

(1)函数的极限;

(2)导数在研究函数的性质及在解决实际问题中的应用;

(3)计算曲边图形的面积和旋转体的体积。

试题详情

6.定积分

(1)概念

设函数f(x)在区间[ab]上连续,用分点ax0<x1<…<xi-1<xi<…xnb把区间[ab]等分成n个小区间,在每个小区间[xi-1xi]上取任一点ξi(i=1,2,…n)作和式Ini)△x(其中△x为小区间长度),把n→∞即△x→0时,和式In的极限叫做函数f(x)在区间[ab]上的定积分,记作:,即i)△x

这里,ab分别叫做积分下限与积分上限,区间[ab]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。

基本的积分公式:C+C(m∈Q, m≠-1);dx=ln+C+C;+C=sinx+C=-cosx+C(表中C均为常数)。

(2)定积分的性质

(k为常数);

(其中acb

(3)定积分求曲边梯形面积

由三条直线xaxb(a<b),x轴及一条曲线yf(x)(f(x)≥0)围成的曲边梯的面积

如果图形由曲线y1f1(x),y2f2(x)(不妨设f1(x)≥f2(x)≥0),及直线xaxb(a<b)围成,那么所求图形的面积SS曲边梯形AMNBS曲边梯形DMNC

试题详情

5.导数的应用

(1)一般地,设函数在某个区间可导,如果,则为增函数;如果,则为减函数;如果在某区间内恒有,则为常数;

(2)曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;

(3)一般地,在区间[a,b]上连续的函数f在[a,b]上必有最大值与最小值。①求函数ƒ在(a,b)内的极值; ②求函数ƒ在区间端点的值ƒ(a)、ƒ(b); ③将函数ƒ 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。

试题详情

4.两个函数的和、差、积的求导法则

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),

即: (

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

函数乘以第二个函数的导数,即:

若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数:

法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:‘=(v0)。

形如y=f的函数称为复合函数。复合函数求导步骤:分解--求导--回代。法则:y'|= y'| ·u'|

试题详情

3.常见函数的导出公式.

 (1)(C为常数)  (2)

 (3)    (4)

试题详情

2.导数的几何意义

  函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)) 处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f/(x)(x-x)。

试题详情

1.导数的概念

函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=

 如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|

即f(x)==

说明:

(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。

(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。

 由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳):

(1)求函数的增量=f(x+)-f(x);

(2)求平均变化率=

(3)取极限,得导数f’(x)=

试题详情

导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值,估计2007年高考继续以上面的几种形式考察不会有大的变化:

(1)考查形式为:选择题、填空题、解答题各种题型都会考察,选择题、填空题一般难度不大,属于高考题中的中低档题,解答题有一定难度,一般与函数及解析几何结合,属于高考的中低档题;

(2)07年高考可能涉及导数综合题,以导数为数学工具考察:导数的物理意义及几何意义,复合函数、数列、不等式等知识。

定积分是新课标教材新增的内容,主要包括定积分的概念、微积分基本定理、定积分的简单应用,由于定积分在实际问题中非常广泛,因而07年的高考预测会在这方面考察,预测07年高考呈现以下几个特点:

(1)新课标第1年考察,难度不会很大,注意基本概念、基本性质、基本公式的考察及简单的应用;高考中本讲的题目一般为选择题、填空题,考查定积分的基本概念及简单运算,属于中低档题;

(2)定积分的应用主要是计算面积,诸如计算曲边梯形的面积、变速直线运动等实际问题要很好的转化为数学模型。

试题详情


同步练习册答案