3、功和能:
⑴能的最基本性质:能就是指能量,如果物体能够做功,就说这个物体。如水流的机械能,带动水轮机发电,这是机械能转化为电能;电动机能电后,把电能转变成机械能;大力发电是把热能转化成电能,电热取暖则又是把电能转化成热能;这些现象都告诉了我们各种不同形式的能是可以互相转化的,而且在转化过程中,能的总量是守恒的。这就是能的最基本性质。
⑵功和能的关系:功是能量转化的量度
①做功的过程就是能的转化过程,能的转化是通过做功来实现的。
②做多少功就有多少能量发生转化(用功的数值来量度能量转化的多少)
2、功率:
⑴功率的概念:功率是表示物体(施力物)做功快慢的物理量,表示了单位时间内,施力物做功的多少。是用功与完成这些功所用时间的比值表示。
⑵功率的公式:
该式表示了在某一段时间t内物体做功的平均功率。当力的方向和位移的方向一致时,上式中的W=Fs,则:
重力的功率可表示为PG=mgvy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。
⑶功率的单位:在国际单位制中,功率的单位是瓦特。
1瓦特=1焦耳/秒,符号:1W=1J/s
除了“瓦”这个单位以外,技术上常用“千瓦”(KW)做功率的单位。
⑷公式P=Fv 中三个物理量的相依关系:
当力F与物体运动方向相同时,P=Fv,在功率一定的情况下,力越大,速度就越小,如汽车从平地开始上坡时,在保持发动机功率不变的条件下,需换档降低速度以增大牵引力。在力大小不变时,功率越大,速度越大,如在竖直方向上匀速吊起重物,起重机输出功率越大,起吊速度就越大。保持速度不变时,功率越大,力越大,如汽车从平路转入上坡时,要保持速度不变,就需要加大油门增大牵引功率以增大牵引力。
⑸注意区别P=、P=Fvcosα、P=Fv三个公式的适用范围:
对P=,P是时间t内的平均功率;对P=Fvcosα,若v是瞬时速度,P是瞬时功率,若v是平 均速度,P是平均功率;对P=Fv,F与v必须同方向,功率P与速度对应,即瞬时速度对应瞬时
功率,平均速度对应平均功率。
⑹额定功率:任何一个动力机器,它的功率都是有一定的限制的,这就是该机器的额定功率,额定功率都要在铭牌上标明,机器工作时受额定功率的限制。而机器功率的发挥是可以人为控制的。如汽车可通过控制给油的多少(油门),确定功率的大小。但功率不管如何改变,功率的最大值是额定功率。
⑺关于机车的两种起动方式:⑷汽车的两种加速问题。当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是P=Fv和F-f = ma
①以额定功率起动:由公式P=Fv和F-f=ma知a=
,由于P恒定,随着v的增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值
。可见恒定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。
②以加速度a匀加速起动:由公式P=Fv和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率Pm,功率不能再增大了。这时匀加速运动结束,其最大速度为,此后汽车要想继续加速就只能做恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。这种加速过程发动机做的功只能用W=Fs计算,不能用W=Pt计算(因为P为变功率)。例题:解析:
要注意两种加速运动过程的最大速度的区别。
例题:如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置。在下列三种情况下,分别用水平拉力F将小球拉到细线与竖直方向成θ角的位置。在此过程中,拉力F做的功各是多少?⑴用F缓慢地拉;⑵F为恒力;⑶若F为恒力,而且拉到该位置时小球的速度刚好为零。可供选择的答案有
A. B.
C.
D.
解:⑴若用F缓慢地拉,则显然F为变力,只能用动能定理求解。F做的功等于该过程克服重力做的功。选D
⑵若F为恒力,则可以直接按定义求功。选B
⑶若F为恒力,而且拉到该位置时小球的速度刚好为零,那么按定义直接求功和按动能定理求功都是正确的。选B、D
在第三种情况下,由=
,可以得到
,可见在摆角为
时小球的速度最大。实际上,因为F与mg的合力也是恒力,而绳的拉力始终不做功,所以其效果相当于一个摆,我们可以把这样的装置叫做“歪摆”。
例题:质量为2t的农用汽车,发动机额定功率为30kW,汽车在水平路面行驶时能达到的最大时速为54km/h。若汽车以额定功率从静止开始加速,当其速度达到v=36km/h时的瞬时加速度是多大?
解析:汽车在水平路面行驶达到最大速度时牵引力F等于阻力f,即Pm=fvm,而速度为v时的牵引力F=Pm/v,再利用F-f=ma,可以求得这时的a=0.50m/s2
基本概念 |
定义 |
物理意义 |
表示 |
功 |
力与力方向上位移的乘积 |
力对空间(位移)的积效果 |
W=F·s cosα |
功率 |
功与做功对应时间的比值 |
做功的快慢 |
P=![]() |
动能 |
由于运动具有的能 |
反映物体处于某运动的快慢时所具有能的多少 |
Ek=![]() |
重力势能 |
地球上物体具有的与高度有关的能 |
反映物体处于某相对高度时具有能的多少 |
EB=mgh |
弹性势能 |
由于发生弹性形变具有的能 |
反映弹性形变物体储藏的势能及对外做功的能力大小 |
EB=![]() |
机械能 |
动能和势能(重力势能和弹性势能)统称机械能 |
反映机械运动中对外做功能力的大小 |
E机=Ek+Ep |
基本规律 |
内容 |
适用条件 |
表示 |
动能定理 |
外力对物体所做总功等于物体的能的变化量 |
不管恒力、变力做功;不管直线、曲线运动都适用 |
W总=Ek2-Ek1 = ![]() ![]() mv21 |
机械能守恒定律 |
只有重力做功,物体机械能守恒 |
只有重力做功才适用 |
E初=E末 |
能的转化和守恒定律 |
能量既不能凭空产生,也不能无影无踪的消失,不同形式的能量在相互转化中守恒 |
整个自然界,整个宇宙普遍适用 |
E=C(常数)或 △E=0 |
1、功:
⑴功的概念:一个物体在力的作用下,如果在力的方向上发生一段位移,我们就说这个力对物体做了功。这里特别强调:力和在力的方向上发生的位移,是做功的两个不可缺少的因素。
⑵功的公式:力对物体所做的功(W)、等于力的大小(F)、位移的大小(s)、力的方向和位移方向间的夹角的余弦三者的乘积。
⑶功是标量:功是由力的大小和位移的大小确定的,它没有方向,是个标量,
⑷功的单位:在国际单位制中,功的单位是焦耳,符号J。1J就1N的力使物体在力的方向上发生1m位移所做的功。
(请注意千万不要把力矩的单位与功的单位相混淆)
⑸功的正负:当时F做正功,当
时F不做功,当
时F做负功。
⑹什么叫克服阻力做功:
a. 力对物体做负功时,通常也可说成是物体克服阻力做功。如刹车时摩擦力对汽车做负功,意味着汽车克服摩擦力做功;重力对竖直上抛物体做负功,意味着物体克服重力做功,计算物体克服某个力所做的功时,其值要取绝对值。
b. 另一种是外力克服阻力做功。如我们把一个质量为m的物体匀速举高时。我们必须用一个与物体所受到力G=mg大小相等、方向相反的外力,克服重力做功,物体被举高为h时,外力克服重力所做的功为W=mgh。
⑺一对作用力和反作用力做功的特点:
①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。
②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
⑻关于摩擦力或介质阻力做功的特点:摩擦力做功的大小是摩擦力与所作用的物体 在力的方向上通过的路程,而非位移。
⑼在两个接触面上因相对滑动而产生的热量:Q=f滑s相对,其中f滑为滑动摩擦力,s相对为接触物的相对位移。
2、由动量定理可知I合=ΔP,而I合=mgt,竖起上抛过程t2为最大,而mg均相同。所以ΔI2为最大。正确答案为B
[小结] 对于动量变化问题,一般要注意两点:
(1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。
(2) 由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。
例题: 向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则 [ ]
A.b的速度方向一定与原速度方向相反
B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大
C.a,b一定同时到达地面
D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等
解析: 物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(mA+mB)v = mAvA+mBvB
当vA与原来速度v同向时,vB可能与vA反向,也可能与vA同向,第二种情况是由于vA的大小没有确定,题目只讲的质量较大,但若vA很小,则mAvA还可能小于原动量(mA+mB)v。这时,vB的方向会与vA方向一致,即与原来方向相同所以A不对。
a, b两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运运动,落地时间由决定。因为h相等,所以勤务地时间一定相等,所以选项C是正确的
由于水平飞行距离x = v·t,a、b两块炸裂后的速度vA、vB不一定相等,而落地时间t又相等,所以水平飞行距离无法比较大小,所以B不对。
根据牛顿第三定律,a,b所受爆炸力FA=-FB,力的作用时间相等,所以冲量I=F·t的大小一定相等。所以D是正确的。
此题的正确答案是:C,D。
6. 功和能的关系
做功的过程是物体能量的转化过程,做了多少功,就有多少能量发生了变化,功是能量转化的量度. |
|
动能定理 |
合外力对物体做的功等于物体动能的增量.即![]() |
重力做功与重力势能增量的关系 |
重力做正功,重力势能减少;重力做负功,重力势能增加.重力对物体所做的功等于物体重力势能增量的负值.即WG=EP1-EP2=
-ΔEP |
弹力做功与弹性势能增量的关系 |
弹力做正功,弹性势能减少;弹力做负功,弹性势能增加.弹力对物体所做的功等于物体弹性势能增量的负值.即W弹力=EP1-EP2=
-ΔEP |
功能原理 |
除重力和弹簧的弹力外,其他力对物体做的功等于物体机械能的增量.即 WF=E2-E1=ΔE |
机械能守恒定律 |
在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即
EK2+EP2 =
EK1+EP1,![]() 或 ΔEK = -ΔEP |
静摩擦力做功的
特点 |
(1)静摩擦力可以做正功,也可以做负功,还可以不做功; (2)在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用; (3)相互摩擦的系统内,一对静摩擦力对系统所做功的和总是等于零. |
滑动摩擦力做功的特点 |
(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功; (2)相互摩擦的系统内,一对滑动摩擦力对系统所做功的和总表现为负功,其大小为 W= -fS相对 (S相对为相互摩擦的物体间的相对位移;若相对运动有往复性,则S相对为相对运动的路程.) (3)在滑动摩擦力对系统做功的过程中,系统的机械能转化为其他形式的能,其大小为 Q= fS相对 |
一对作用力与反作用力做功的特点 |
(1)作用力做正功时,反作用力可以做正功,也可以做负功,还可以不做功;作用力做负功、不做功时,反作用力亦同样如此. (2)一对作用力与反作用力对系统所做功的总和可以是正功,也可以是负功,还可以零. |
例题: 质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v。解析:
解析:系统水平方向动量守恒,全过程机械能也守恒。
在小球上升过程中,由水平方向系统动量守恒得:
由系统机械能守恒得:
解得
全过程系统水平动量守恒,机械能守恒,得
本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。
例题:动量分别为5kgm/s和6kgm/s的小球A、B沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。若已知碰撞后A的动量减小了2kgm/s,而方向不变,那么A、B质量之比的可能范围是什么?
解析:A能追上B,说明碰前vA>vB,∴;碰后A的速度不大于B的速度,
;又因为碰撞过程系统动能不会增加,
,由以上不等式组解得:
此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。
例题:设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:
从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d
对子弹用动能定理:
……①
对木块用动能定理:
……②
①、②相减得: ……③
这个式子的物理意义是:fd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
由上式不难求得平均阻力的大小:
至于木块前进的距离s2,可以由以上②、③相比得出:
从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:
一般情况下,所以s2<<d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:
…④
当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔEK= f d(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔEK的大小。
做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。
以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0= m1v1+ m2v2列式。
例题:在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△P,有[ ]
A.平抛过程较大 B.竖直上抛过程较大
C.竖直下抛过程较大 D.三者一样大的。
解析:1.由动量变化图中可知,△P2最大,即竖直上抛过程动量增量最大,所以应选B。
5.相互作用中的动量与能量,三类碰撞中能量的变化:
(1)完全非弹性碰撞:动量守恒,机械能损失最大
(2)完全弹性碰撞:动量守恒,机械能也守恒。
设两物体发生完全弹性碰撞,其中m1以v1匀速运动,m2静止。
据
可得
讨论:(a)当m1>m2时,v1′与v1方向一致;
(b)当m1=m2时,v1′=0,v2′=v1,即m1与m2交换速度
(c)当m1<m2时,v1′反向,v2′与v1同向。
(3)非完全弹性碰撞:为一般情况,只有动量守恒,机械能有损失,损失量不最大,亦不最小。
4.动能定理与能量守恒定律关系--理解“摩擦生热”(Q=f·Δs)
设质量为m2的板在光滑水平面上以速度υ2运动,质量为m1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f,经过一段时间,物块的位移为s1,板的位移s2,此时两物体的速度变为υ′1和υ′2由动能定理得:
-fs1=
m1υ1′2/2-m1υ12/2 ①
fs2=m2υ2′2/2-m2υ22/2 ②
在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:
Q=(m1υ12/2+m2υ22/2)-(m1υ1′2/2-m2υ2′2/2)=f(s1-s2)= f·Δs ③
由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。
特别要指出,在用Q= f·Δs 计算摩擦生热时,正确理解是关键。这里分两种情况:
(1)若一个物体相对于另一个物体作单向运动,Δs为相对位移;
(2)若一个物体相对于另一个物体作往返运动,Δs为相对路程。
3.动量守恒定律与动量定理的关系
动量守恒定律的数学表达式为:m1v1+m2v2=m1v1′+m2v2′,可由动量定理推导得出.
如图所示,分别以m1和m2为研究对象,根据动量定理:
F1Δt= m1v1′- m1v1 ①
F2Δt= m2v2′- m2v2 ②
F1=-F2 ③
∴ m1v1+m2v2=m1v1′+m2v2′
可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.
2.两个“定律”
(1)动量守恒定律:适用条件--系统不受外力或所受外力之和为零
公式:m1v1+m2v2=m1v1′+m2v2 ′或 p=p ′
(2)机械能守恒定律:适用条件--只有重力(或弹簧的弹力)做功
公式:Ek2+Ep2=Ek1+Ep1 或 ΔEp= -ΔEk
1.两个“定理”
(1)动量定理:F·t=Δp 矢量式 (力F在时间t上积累,影响物体的动量p)
(2)动能定理:F·s=ΔEk 标量式 (力F在空间s上积累,影响物体的动能Ek)
动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F合·t=Δp,是描述力的时间积累作用效果--使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.
例如,质量为m的小球以速度v0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt,弹起时速度大小仍为v0且与竖直方向仍成θ角,如图所示.则在Δt内:
以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:
F′击·Δt-mgΔt=mv0cosθ-(-mv0cosθ)
小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.
综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt内应用动能定理列方程:W合=mυ02/2-mυ02 /2 =0
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com