0  403357  403365  403371  403375  403381  403383  403387  403393  403395  403401  403407  403411  403413  403417  403423  403425  403431  403435  403437  403441  403443  403447  403449  403451  403452  403453  403455  403456  403457  403459  403461  403465  403467  403471  403473  403477  403483  403485  403491  403495  403497  403501  403507  403513  403515  403521  403525  403527  403533  403537  403543  403551  447090 

3、功和能:

⑴能的最基本性质:能就是指能量,如果物体能够做功,就说这个物体。如水流的机械能,带动水轮机发电,这是机械能转化为电能;电动机能电后,把电能转变成机械能;大力发电是把热能转化成电能,电热取暖则又是把电能转化成热能;这些现象都告诉了我们各种不同形式的能是可以互相转化的,而且在转化过程中,能的总量是守恒的。这就是能的最基本性质。

⑵功和能的关系:功是能量转化的量度

①做功的过程就是能的转化过程,能的转化是通过做功来实现的。

②做多少功就有多少能量发生转化(用功的数值来量度能量转化的多少)

试题详情

2、功率:

⑴功率的概念:功率是表示物体(施力物)做功快慢的物理量,表示了单位时间内,施力物做功的多少。是用功与完成这些功所用时间的比值表示。

⑵功率的公式:

   该式表示了在某一段时间t内物体做功的平均功率。当力的方向和位移的方向一致时,上式中的W=Fs,则:

重力的功率可表示为PG=mgvy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。

⑶功率的单位:在国际单位制中,功率的单位是瓦特。

1瓦特=1焦耳/秒,符号:1W=1J/s

除了“瓦”这个单位以外,技术上常用“千瓦”(KW)做功率的单位。

⑷公式P=Fv 中三个物理量的相依关系:

当力F与物体运动方向相同时,P=Fv,在功率一定的情况下,力越大,速度就越小,如汽车从平地开始上坡时,在保持发动机功率不变的条件下,需换档降低速度以增大牵引力。在力大小不变时,功率越大,速度越大,如在竖直方向上匀速吊起重物,起重机输出功率越大,起吊速度就越大。保持速度不变时,功率越大,力越大,如汽车从平路转入上坡时,要保持速度不变,就需要加大油门增大牵引功率以增大牵引力。

⑸注意区别P=、P=Fvcosα、P=Fv三个公式的适用范围:

对P=,P是时间t内的平均功率;对P=Fvcosα,若v是瞬时速度,P是瞬时功率,若v是平 均速度,P是平均功率;对P=Fv,F与v必须同方向,功率P与速度对应,即瞬时速度对应瞬时 功率,平均速度对应平均功率。

⑹额定功率:任何一个动力机器,它的功率都是有一定的限制的,这就是该机器的额定功率,额定功率都要在铭牌上标明,机器工作时受额定功率的限制。而机器功率的发挥是可以人为控制的。如汽车可通过控制给油的多少(油门),确定功率的大小。但功率不管如何改变,功率的最大值是额定功率。

⑺关于机车的两种起动方式:⑷汽车的两种加速问题。当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是P=FvF-f = ma

①以额定功率起动:由公式P=FvF-f=ma知a= ,由于P恒定,随着v的增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=fa=0,这时v达到最大值。可见恒定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。

②以加速度a匀加速起动:由公式P=FvF-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率Pm,功率不能再增大了。这时匀加速运动结束,其最大速度为,此后汽车要想继续加速就只能做恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。这种加速过程发动机做的功只能用W=Fžs计算,不能用W=Pžt计算(因为P为变功率)。例题:解析:

   要注意两种加速运动过程的最大速度的区别。

例题:如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置。在下列三种情况下,分别用水平拉力F将小球拉到细线与竖直方向成θ角的位置。在此过程中,拉力F做的功各是多少?⑴用F缓慢地拉;⑵F为恒力;⑶若F为恒力,而且拉到该位置时小球的速度刚好为零。可供选择的答案有

A.  B.  C.  D.

解:⑴若用F缓慢地拉,则显然F为变力,只能用动能定理求解。F做的功等于该过程克服重力做的功。选D

⑵若F为恒力,则可以直接按定义求功。选B

⑶若F为恒力,而且拉到该位置时小球的速度刚好为零,那么按定义直接求功和按动能定理求功都是正确的。选B、D

   在第三种情况下,由=,可以得到,可见在摆角为时小球的速度最大。实际上,因为Fmg的合力也是恒力,而绳的拉力始终不做功,所以其效果相当于一个摆,我们可以把这样的装置叫做“歪摆”。

例题:质量为2t的农用汽车,发动机额定功率为30kW,汽车在水平路面行驶时能达到的最大时速为54km/h。若汽车以额定功率从静止开始加速,当其速度达到v=36km/h时的瞬时加速度是多大? 

解析:汽车在水平路面行驶达到最大速度时牵引力F等于阻力f,即Pm=fžvm,而速度为v时的牵引力F=Pm/v,再利用F-f=ma,可以求得这时的a=0.50m/s2

试题详情

 

基本概念
定义
物理意义
表示

力与力方向上位移的乘积
力对空间(位移)的积效果
W=F·s cosα
功率
 
功与做功对应时间的比值
做功的快慢
P==F·v·
动能
 
由于运动具有的能
反映物体处于某运动的快慢时所具有能的多少
Ek=mv2
重力势能
地球上物体具有的与高度有关的能
反映物体处于某相对高度时具有能的多少
EB=mgh
弹性势能
由于发生弹性形变具有的能
反映弹性形变物体储藏的势能及对外做功的能力大小
EB= kx2
机械能
动能和势能(重力势能和弹性势能)统称机械能
反映机械运动中对外做功能力的大小
E=Ek+Ep

基本规律
内容
适用条件
表示
 
动能定理
外力对物体所做总功等于物体的能的变化量
不管恒力、变力做功;不管直线、曲线运动都适用
W=Ek2-Ek1
=mv22-
mv21
机械能守恒定律
只有重力做功,物体机械能守恒
只有重力做功才适用
E=E
能的转化和守恒定律
能量既不能凭空产生,也不能无影无踪的消失,不同形式的能量在相互转化中守恒
整个自然界,整个宇宙普遍适用
E=C(常数)或
△E=0

1、功:

⑴功的概念:一个物体在力的作用下,如果在力的方向上发生一段位移,我们就说这个力对物体做了功。这里特别强调:力和在力的方向上发生的位移,是做功的两个不可缺少的因素。

⑵功的公式:力对物体所做的功(W)、等于力的大小(F)、位移的大小(s)、力的方向和位移方向间的夹角的余弦三者的乘积。

⑶功是标量:功是由力的大小和位移的大小确定的,它没有方向,是个标量,

⑷功的单位:在国际单位制中,功的单位是焦耳,符号J。1J就1N的力使物体在力的方向上发生1m位移所做的功。

   (请注意千万不要把力矩的单位与功的单位相混淆)

⑸功的正负:当F做正功,当F不做功,当F做负功。

⑹什么叫克服阻力做功:

a.    力对物体做负功时,通常也可说成是物体克服阻力做功。如刹车时摩擦力对汽车做负功,意味着汽车克服摩擦力做功;重力对竖直上抛物体做负功,意味着物体克服重力做功,计算物体克服某个力所做的功时,其值要取绝对值。

b.    另一种是外力克服阻力做功。如我们把一个质量为m的物体匀速举高时。我们必须用一个与物体所受到力G=mg大小相等、方向相反的外力,克服重力做功,物体被举高为h时,外力克服重力所做的功为W=mgh。

⑺一对作用力和反作用力做功的特点:

①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。

②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。

⑻关于摩擦力或介质阻力做功的特点:摩擦力做功的大小是摩擦力与所作用的物体 在力的方向上通过的路程,而非位移。

⑼在两个接触面上因相对滑动而产生的热量:Q=fs相对,其中f为滑动摩擦力,s相对为接触物的相对位移。

试题详情

2、由动量定理可知I=ΔP,而I=mgt,竖起上抛过程t2为最大,而mg均相同。所以ΔI2为最大。正确答案为B

 [小结] 对于动量变化问题,一般要注意两点:

 (1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。

 (2) 由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。

例题: 向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则 [ ]

 A.b的速度方向一定与原速度方向相反

 B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大

 C.a,b一定同时到达地面

 D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等 

 解析: 物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(mA+mB)v = mAvA+mBvB

 当vA与原来速度v同向时,vB可能与vA反向,也可能与vA同向,第二种情况是由于vA的大小没有确定,题目只讲的质量较大,但若vA很小,则mAvA还可能小于原动量(mA+mB)v。这时,vB的方向会与vA方向一致,即与原来方向相同所以A不对。

a,  b两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运运动,落地时间由决定。因为h相等,所以勤务地时间一定相等,所以选项C是正确的

 由于水平飞行距离x = v·t,a、b两块炸裂后的速度vA、vB不一定相等,而落地时间t又相等,所以水平飞行距离无法比较大小,所以B不对。

 根据牛顿第三定律,a,b所受爆炸力FA=-FB,力的作用时间相等,所以冲量I=F·t的大小一定相等。所以D是正确的。

 此题的正确答案是:C,D。

试题详情

6. 功和能的关系

做功的过程是物体能量的转化过程,做了多少功,就有多少能量发生了变化,功是能量转化的量度.
动能定理
合外力对物体做的功等于物体动能的增量.即
重力做功与重力势能增量的关系
重力做正功,重力势能减少;重力做负功,重力势能增加.重力对物体所做的功等于物体重力势能增量的负值.即WG=EP1-EP2= -ΔEP
弹力做功与弹性势能增量的关系
弹力做正功,弹性势能减少;弹力做负功,弹性势能增加.弹力对物体所做的功等于物体弹性势能增量的负值.即W弹力=EP1-EP2= -ΔEP
功能原理
除重力和弹簧的弹力外,其他力对物体做的功等于物体机械能的增量.即
WF=E2-E1E
机械能守恒定律
在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即  EK2+EP2 = EK1+EP1
或  ΔEK = -ΔEP
静摩擦力做功的 特点
(1)静摩擦力可以做正功,也可以做负功,还可以不做功;
(2)在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用;
(3)相互摩擦的系统内,一对静摩擦力对系统所做功的和总是等于零.
滑动摩擦力做功的特点
(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功;
(2)相互摩擦的系统内,一对滑动摩擦力对系统所做功的和总表现为负功,其大小为  W= -fS相对  (S相对为相互摩擦的物体间的相对位移;若相对运动有往复性,则S相对为相对运动的路程.)
(3)在滑动摩擦力对系统做功的过程中,系统的机械能转化为其他形式的能,其大小为  Q= fS相对
一对作用力与反作用力做功的特点
(1)作用力做正功时,反作用力可以做正功,也可以做负功,还可以不做功;作用力做负功、不做功时,反作用力亦同样如此.
(2)一对作用力与反作用力对系统所做功的总和可以是正功,也可以是负功,还可以零.

例题: 质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v。解析:

解析:系统水平方向动量守恒,全过程机械能也守恒。

在小球上升过程中,由水平方向系统动量守恒得:

由系统机械能守恒得:    解得

全过程系统水平动量守恒,机械能守恒,得

   本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。

例题:动量分别为5kgžm/s和6kgžm/s的小球AB沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。若已知碰撞后A的动量减小了2kgžm/s,而方向不变,那么AB质量之比的可能范围是什么?

解析:A能追上B,说明碰前vA>vB,∴;碰后A的速度不大于B的速度, ;又因为碰撞过程系统动能不会增加, ,由以上不等式组解得:

此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。

例题:设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒: 

   

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1s2,如图所示,显然有s1-s2=d

对子弹用动能定理:        ……①

对木块用动能定理:          ……②

①、②相减得: ……③

这个式子的物理意义是:fžd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:

至于木块前进的距离s2,可以由以上②、③相比得出:

从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:

  

   一般情况下,所以s2<<d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:…④

   当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔEK= f žd(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔEK的大小。

   做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。

   以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0= m1v1+ m2v2列式。

例题:在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△P,有[ ]

 A.平抛过程较大   B.竖直上抛过程较大

 C.竖直下抛过程较大  D.三者一样大的。

 解析:1.由动量变化图中可知,△P2最大,即竖直上抛过程动量增量最大,所以应选B。

试题详情

5.相互作用中的动量与能量,三类碰撞中能量的变化:

(1)完全非弹性碰撞:动量守恒,机械能损失最大

(2)完全弹性碰撞:动量守恒,机械能也守恒。

设两物体发生完全弹性碰撞,其中m1以v1匀速运动,m2静止。

可得

讨论:(a)当m1>m2时,v1′与v1方向一致;

(b)当m1=m2时,v1′=0,v2′=v1,即m1与m2交换速度

(c)当m1<m2时,v1′反向,v2′与v1同向。

(3)非完全弹性碰撞:为一般情况,只有动量守恒,机械能有损失,损失量不最大,亦不最小。

试题详情

4.动能定理与能量守恒定律关系--理解“摩擦生热”(Q=f·Δs)

设质量为m2的板在光滑水平面上以速度υ2运动,质量为m1的物块以速度υ1在板上同向运动,且υ1υ2,它们之间相互作用的滑动摩擦力大小为f,经过一段时间,物块的位移为s1,板的位移s2,此时两物体的速度变为υ1υ2由动能定理得:

 -fs1=m1υ12/2-m1υ12/2    ①

 fs2=m2υ22/2-m2υ22/2       ②

在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:

Q=(m1υ12/2+m2υ22/2)-(m1υ12/2-m2υ22/2)=f(s1s2)= f·Δs      ③

由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。

特别要指出,在用Q= f·Δs 计算摩擦生热时,正确理解是关键。这里分两种情况:

(1)若一个物体相对于另一个物体作单向运动,Δs为相对位移;

(2)若一个物体相对于另一个物体作往返运动,Δs为相对路程。

试题详情

3.动量守恒定律与动量定理的关系

动量守恒定律的数学表达式为:m1v1+m2v2=m1v1+m2v2,可由动量定理推导得出.

如图所示,分别以m1m2为研究对象,根据动量定理:

F1Δt= m1v1- m1v1     ①

F2Δt= m2v2- m2v2    ②

F1=-F2         ③

∴  m1v1+m2v2=m1v1+m2v2

可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.

试题详情

2.两个“定律”

(1)动量守恒定律:适用条件--系统不受外力或所受外力之和为零

公式:m1v1+m2v2=m1v1′+m2v2 ′或  p=p

(2)机械能守恒定律:适用条件--只有重力(或弹簧的弹力)做功

公式:Ek2+Ep2=Ek1+Ep1  或 ΔEp= -ΔEk

试题详情

1.两个“定理”

(1)动量定理:F·tp  矢量式  (力F在时间t上积累,影响物体的动量p)

(2)动能定理:F·sEk  标量式 (力F在空间s上积累,影响物体的动能Ek)

动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F·tp,是描述力的时间积累作用效果--使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.

例如,质量为m的小球以速度v0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt,弹起时速度大小仍为v0且与竖直方向仍成θ角,如图所示.则在Δt内:

以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:

F·Δt-mgΔt=mv0cosθ-(-mv0cosθ)

小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.

综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt内应用动能定理列方程:W=02/2-02 /2 =0

试题详情


同步练习册答案