7、电流表的组成及磁场分
(1)电流表的组成
永久磁铁、铁芯、线圈、螺旋弹簧、指针、刻度盘等六部分组成。
(2)电流表中磁场分布的特点:电流表中磁铁与铁芯之间的磁场是均匀辐向分布的。不管线圈处于什么位置,线圈平面与磁感线之间的夹角都是零度,各点的磁感应强度B的大小是相等的。
6、安培力
(1)安培力:磁场对电流的作用力通常称为安培力。
⑵安培力的大小:F=BILsinθ
θ=900时 F=BIL
在非匀强磁场中,公式F=BILsinθ适用于很短的一段通电导线,这是因为导线很短时,它所在处各点的磁感应强度的变化很小,可近似认为磁场是匀强磁场。
θ为通电导线方向与磁场方向有一个夹角,我们可以把磁感应强度B分解为两个分量:一个是跟通电导线方向平行的分量B1=Bcosθ,另一个是跟通电导线方向垂直的分量B2=Bsinθ。B1与通电导线方向平行,对电流没有作用力,电流受到的力是由B2决定的,即F=ILB2。将B2=Bsinθ代入上式,得到F=ILBsinθ。这就是通电导线方向与磁场方向成某一角度时安培力的公式。公式F=BIL是上式θ=90°时的特殊情况。
(3)安培力的方向
安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面。
通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:
伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向。
应该注意的是:若电流方向和磁场方向垂直,则磁场力的方向、电流方向、磁场方向三者互相垂直;若电流方向和磁场方向不垂直,则磁场力的方向仍垂直于电流方向,也同时垂直于磁场方向。
(4)安培力F、磁感应强度B、电流I三者的方向关系
通电导线在磁场中所受安培力F,总垂直于电流与磁感线所确定的平面.
①已知电流I、磁感应强度B的方向,可用左手定则唯一确定安培力F的方向.
②已知F和B的方向,当导线的位置确定时,可唯一确定电流I的方向.
③已知F和I的方向时,磁感应强度B的方向不能唯一确定.
(5)用有效长度计算安培力的大小
如图所示,弯曲的导线ACD的有效长度为l,等于两端点A、D所连直线的长度,其所受的安培力为:F = BIl
(6)安培力作用下物体运动方向的判断
①电流元法:即把整段电流等效成多段直线电流元用左手定则判断出每小段电流元所受安培力方向再判断合力的方向,然后再确定运动方向.
②等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可以等效成环形电流或通电螺线管.通电螺线管也可以等效成很多匝的环形电流.
③利用结论法:
a、当两电流相互平行时,无转动趋势;同向电流相互吸引;反向电流相互排斥;
b、两电流不平行时,有转动到相互平行、电流方向相同的趋势.
利用这些结论分析、判断,可以事半功倍.
例题:如图所示,把一重力不计的通电直导线水平放在蹄形磁铁磁极的正上方,导线可以自由移动,当导线通过图示方向电流时,导线的运动情况是(从上往下看)()
A.顺时针方向转动,同时下降
B.顺时针方向转动,同时上升
C.逆时针方向转动,同时下降
D.逆时针方向转动,同时上升
解析:根据蹄形磁铁磁感线分布和左手定则可判断A端受垂直纸面向里的安培力,B端受垂直纸面向外的安培力,故导线逆时针转动;假设导线自图示位置转过90°,由左手定则可知,导线AB受竖直向下安培力作用;导线下降,故导线在逆时针转动的同时向下运动,
所以本题答案应选C。
例题:如图所示,倾角为 θ的光滑斜面上, 有一长为L,质量为m的通电导线,导线中的电流强度为I,电流方向垂直纸面向外.在图中加一匀强磁场,可使导线平衡,试求:最小的磁感应强度B是多少?方向如何?
解析:导体棒受重力、支持力和安培力作用而平衡,由力学知识可知,当第三个力(安培力)F与F'垂直时,F有最小值,如图,即安培力方向平行于斜面向上,F=mgsinθ,又因为当导体棒与磁感应强度垂直时,安培力最大,故本题所求最小磁感应强度 B=,方向为垂直斜面向下。
例题:条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(增大、减小还是不变?)。水平面对磁铁的摩擦力大小为__。
解:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
例题:如图在条形磁铁N极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?
解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。)
5、匀强磁场
(1)定义:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。
(2)产生方法:距离很近的两个异名磁极之间的磁场,通电螺线管内部的磁场(除边缘部分外)都可认为是匀强磁场。
(3)磁感线的特点:匀强磁场的磁感线是间距相等的平行直线。
4、磁感应强度
(1)定义:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积IL的比值叫磁感应强度。
说明:如果各处的磁场强弱不同,仍然可用上述方法研究磁场,只是要用一段特别短的通电导线来研究磁场。如果导线很短很短,B就是导线所在处的磁感应强度。
(2)公式:B= (量度式)
(3)单位:在国际单位制中,磁感应强度的单位是特斯特,简称特,国际符号是T。
1T=1
常见的地磁场磁感应强度大约是0.3×10-4T-0.7×10-4T,永磁铁磁极附近的磁感应强度大约是10-3T-1T。在电机的变压器铁芯中,磁感应强度可达0.8T-1.4T。
(4)方向:磁感应强度是矢量,把某点的磁场方向定义为该点的磁感应强度的方向。
(5)物理意义:磁感应强度B是表示磁场强弱和方向的物理量。
(6)形象表示方法:在磁场中也可以用磁感线的疏密程度大致表示磁感应强度的大小,这样,从磁感线的分布就可以形象地表示磁场的强弱和方向。
在同一磁场的磁感线分布图上,磁感线越密的地方,磁感应强度越大。
(7)磁场的叠加:磁感应强度是矢量,它可以合成,合成同样遵守平形四边形定则。
若空间存在几个磁场,空间的磁场应由这几个磁场叠加而成,某点的磁感应强度为B。
B=B1+B2+B3……(矢量和)
例题:如图所示,三根通电直导线垂直纸面放置,位于b、c、d处,通电电流大小相同,方向如图。a位于bd中点。则a点的磁感应强度方向是( )
A.垂直纸面指向纸里 B.垂直纸面指向纸外
C.沿纸面由a指向b D.沿纸面由a指向c
解析:根据安培定则:b、d两根导线在a点形成的磁场,磁感应强度大小相等,方向相反,合磁感应强度应为零,故a点磁场就由通电导线c来决定,根据安培定则在a点处的磁场,磁感应强度方向应为沿纸面由a指向b,正确选项为C。
例题:①磁场中放一根与磁场方向垂直的通电导线,它的电流强度是2.5 A,导线长1 cm,它受到的安培力为5×10-2 N,则这个位置的磁感应强度是多大?
②接上题,如果把通电导线中的电流强度增大到5 A时,这一点的磁感应强度应是多大?
③如果通电导线在磁场中某处不受磁场力,是否肯定这里没有磁场.
解答:①B==2T。
②磁感应强度B是由磁场和空间位置(点)决定的,和导线的长度L、电流I的大小无关,所以该点的磁感应强度是2 T。
③如果通电导线在磁场中某处不受磁场力,则可能有两种可能:该处没有磁场;该处有磁场,只不过通电导线与磁场方向平行。
3、地磁场
(1)地磁场:地球本身在地面附近有空间产生的磁场,叫做地磁场。
(2)地磁场的分布特点:地磁场的分布大致就像一个条形磁铁外面的磁场。
2、磁场的方向 磁感线
(1)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。
(2)磁感线:
①磁感线所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上。
②磁感线的可以用实验来模拟
(3)几种典型磁体周围的磁感线分布
①条形磁铁磁场的磁感线
②条形磁铁磁场的磁感线
③直线电流磁场的磁感线
直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。
直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
④环形电流磁场的磁感线
环形电流磁场的磁感线是一些围绕环形导线的闭合曲线。在环形导线的中心轴线上,磁感线和环形导线的平面垂直。
环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。
⑤通电螺线管磁场的磁感线
通电螺线管外部的磁感线和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极。
通电螺线管内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线。通电螺线管内部的磁场比两极处的磁场更强。
通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管,让弯曲四指所指的方向和电流的方向一致,大拇指所指的方向就是螺线管内部磁感线的方向。也就是说,大拇指指向通电螺线管的北极。
(4)磁感线的物理意义
①磁感线上任意一点的切线方向表示该位置的磁场方向,亦即小磁针在该位置时N极的受力方向,或小磁针在该位置静止时N极的指向。
②磁感线的疏密程度表示磁场的强弱。磁感线密集处磁场强,稀疏处磁场弱。
(5)磁感线的特点
①磁感线为闭合曲线,无起点和终点。在磁体的外部磁感线由N极发出,回到S极。在磁体的内部磁感线则由S极指向N极。
②在稳定的磁场中,某一点只有惟一确定的磁场方向,所以两条磁感线不能相交。
③磁感线也不相切。若磁感线相切,则切点处的磁场将趋近于无穷大,这是不可能的。
1、磁场
(1)磁场的来源
①磁体的周围存在磁场
②电流的周围存在磁场:丹麦物理学家奥斯特首先发现电流周围也存在着磁场。
把一条导线平行地放在小磁针的上方,给导线中通入电流。当导线中通入电流,导线下方的小磁针发生转动。
(2)磁体与电流间的相互作用通过磁场来完成
(3)磁场
①磁场:磁体和电流周围,运动电荷周围存在的一种特殊物质,叫磁场。
②磁场的基本性质:对处于其中的磁极或电流有力的作用。
③磁场的物质性:虽然磁场看不见摸不着,对于我们初学者感到很抽象,其实磁场和电场一样是客观存在的,是物质存在的一种特殊形式。
26、电波的接收
(1)电谐振
接收电磁波时,首先要从诸多的电磁波中把我们需要的选出来,通常叫做选台。这就要设法使我们需要的电磁波在接收天线中激起的感应电流最强。在无线电技术里,是利用电谐振来达到这个目的的。当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强.这种现象叫做电谐振,相当于机械振动中的共振。
当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫电谐振。
(2)调谐和调谐电路
使接收电路产生电谐振的过程叫做调谐,能够调谐的接收电路叫做调谐电路。
(3)检波和检波电路
由调谐电路接收到的感应电流,是经过调制的高频振荡电流,还不能使我们直接感受到所需要的信号。例如在收音机中,这种高频振荡电流不能使耳机或扬声器的振动片振动发声。要听到声音,必须从高频振荡电流中“检”出声音信号,使扬声器(或耳机)中的动片随声音信号振动。
从接收到的高频振荡中“检”出所携带的信号,叫做检波。检波是调制的逆过程,因此也叫解调。
右图中L2、D、C2和耳机共同组成检波电路。
检波之后的信号再经过放大、重现,我们就可以听到或看到了。
现在移动电话的使用十分普遍、无绳电话、寻呼机也走入人们的生活,这些都是借助电磁波来传递信息的。
例题:调谐电路中可变电容器的动片从完全旋入到完全旋出仍接收不到某较高频率电台发出的电信号,要收到该电台的信号,应该怎么办?C
A.增加调谐电路线圈的匝数 B.加大电源电压
C.减少调谐电路线圈的匝数 D.减小电源电压
例题: 电子感应加速器是利用变化磁场产生的电场来加速电子的。在圆形磁铁的两极之间有一环形真空室,用交变电流励磁的电磁铁在两极间产生交变磁场,从而在环形室内产生很强的电场,使电子加速。被加速的电子同时在洛伦兹力的作用下沿圆形轨道运动。设法把高能电子引入靶室,能使其进一步加速。在一个半径为r=0.84m的电子感应加速器中,电子在被加速的4.2ms内获得的能量为120MeV。这期间电子轨道内的高频交变磁场是线性变化的,磁通量从零增到1.8Wb,求电子共绕行了多少周?
解:根据法拉第电磁感应定律,环形室内的感应电动势为E== 429V,设电子在加速器中绕行了N周,则电场力做功NeE应该等于电子的动能EK,所以有N= EK/Ee,带入数据可得N=2.8×105周。
例题:如图所示,半径为 r 且水平放置的光滑绝缘的环形管道内,有一个电荷量为 e,质量为 m 的电子。此装置放在匀强磁场中,其磁感应强度随时间变化的关系式为 B=B0+kt(k>0)。根据麦克斯韦电磁场理论,均匀变化的磁场将产生稳定的电场,该感应电场对电子将有沿圆环切线方向的作用力,使其得到加速。设t=0时刻电子的初速度大小为v0,方向顺时针,从此开始后运动一周后的磁感应强度为B1,则此时电子的速度大小为
A. B. C. D.
解:感应电动势为E=kπr2,电场方向逆时针,电场力对电子做正功。在转动一圈过程中对电子用动能定理:,B正确;由半径公式知,A也正确,答案为AB。
例题:如图所示,平行板电容器和电池组相连。用绝缘工具将电容器两板间的距离逐渐增大的过程中,关于电容器两极板间的电场和磁场,下列说法中正确的是
A.两极板间的电压和场强都将逐渐减小
B.两极板间的电压不变,场强逐渐减小
C.两极板间将产生顺时针方向的磁场
D.两极板间将产生逆时针方向的磁场
解:由于极板和电源保持连接,因此两极板间电压不变。两极板间距离增大,因此场强E=U/d将减小。由于电容器带电量Q=UC,d增大时,电容C减小,因此电容器带电量减小,即电容器放电。放电电流方向为逆时针。在引线周围的磁场方向为逆时针方向,因此在两极板间的磁场方向也是逆时针方向。选BD。
24、无线电波的分段
(1)无线电波:无线电技术中使用的电磁波叫做无线电波。
(2)无线电波的分段
无线电波的波长从几毫米到几十千米。通常根据波长或频率把无线电波分成几个波段,如下表所示:
波段 |
波长 |
频率 |
传播方式 |
主要用途 |
|
长波 |
30 000m-3 000m |
10 kHz-100 kHz |
地波 |
超远程无线通讯和导航 |
|
中波 |
3 000m-200m |
100 kHz-1 500 kHz |
地波和天波 |
调幅无线电广播、电报、通信 |
|
中短波 |
200m-50m |
1500 kHz-6 000 kHz |
|||
短波 |
50m-10m |
6MHz-30 MHz |
天波 |
||
微波 |
米波 |
10m-1m |
30MHz-300MHz |
近似直线传播 |
调频无线电广播、电视、导航 |
分米波 |
1 m-0.1m |
300 MHz-3 000 MHz |
直线传播 |
电视、雷达、导航 |
|
厘米波 |
10cm-1cm |
3 000 MHz-30 000 MHz |
|||
毫米波 |
10mm-1mm |
30000MHz-300 000 MHz |
25无线电波的发射
在无线电波的发射过程中,需要将被传递的信号如声音、图象等信号附加到高频振荡信号上向外发射出去,下面就学习无线电波的发射。
(1)发射电路
实际应用中的开放电路,线圈下部用导线接地,这条导线叫做地线;线圈上部接到比较高的导线上,这条导线叫做天线(图示右部)。
无线电波就由这样的开放电路发射出去。电视发射塔建得很高,是为了使无线电波发射得较远。
在实际发射无线电波的装置中,在上面所说的开放电路旁还需加一个振荡器电路与之耦合(图示左部)。LC振荡器电路产生的高频振荡电流通过L2与L1的互感作用,使L1也产生同频率的振荡电流,振荡电流在开放电路中激发出无线电波,向四周发射。
(2)调制
①调制:要传递的信号附加到高频等幅振荡电流上的过程叫调制。
②调制的两种方式:制分调幅和调频两种方式。
a.调幅
使高频振荡的振幅随信号而改变叫做调幅。
调幅广播(AM)一般使用中波和短波的波段。
b.调频
使高频振荡的频率随信号而改变叫做调频。
调频广播(FM)和电视广播都采用调频的方法来调制,通常使用微波中的甚高频(VHF)和超高频(UHF)波段。
23、电磁波与机械波的比较
(1)电磁波与机械波有本质的不同
前者是电磁现象,后者是力学现象。机械波传播需要介质,电磁波在真空中也可以传播。
(2)二者具有波动的共性
机械波是位移这个物理量随时间和空间做周期性的变化,电磁波则是E和B这两个物理量随时间和空间做周期性的变化。二者都能产生反射、折射、衍射和干涉等现象。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com