2、物体做曲线运动的条件:
⑴曲线运动的物体所受的合外力不为零,合外力产生加速度,使速度方向(大小)发生变化
⑵曲线运动的条件:物体所受的合外力F与物体速度方向不在同一条直线上
⑶力决定了给定物体的加速度,力与速度的方向关系决定了物体运动的轨迹
F(或a)跟v在一直线上→直线运动:a恒定→匀变速直线运动;
a变化→变加速直线运动。
F(或a)跟v不在一直线上→直线运动:a恒定→匀变速曲线运动;
a变化→变加速曲线运动
⑷根据质点运动轨迹大致判断受力方向:做曲线运动的物体所受的合外力必指向运动轨迹的内侧,也就是运动轨迹必夹在速度方向与合外力方向之间。
⑸常见运动的类型有:
①a=0:匀速直线运动或静止。
②a恒定:性质为匀变速运动,分为:①‘ v、a同向,匀加速直线运动;②、v、a反向,匀减速直线运动;③’v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。)
③a变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。
例题:如图所示,物体在恒力F作用下沿曲线从A运动到B,这时,突然使它所受力反向,大小不变,即由F变为-F。在此力作用下,物体以后运动情况,下列说法正确的是
A.物体不可能沿曲线Ba运动;
B.物体不可能沿直线Bb运动;
C.物体不可能沿曲线Bc运动;
D.物体不可能沿原曲线由B返回A。
解析:因为在曲线运动中,某点的速度方向是轨迹上该点的切线方向,如图所示,在恒力作用下AB为抛物线,由其形状可以画出vA方向和F方向。同样,在B点可以做出vB和-F方向。由于vB和-F不在一条直线上,所以以后运动轨迹不可能是直线。又根据运动合成的知识,物体应该沿BC轨道运动。即物体不会沿Ba运动,也不会沿原曲线返回。
因此,本题应选A、B、D。
掌握好运动和力的关系以及物体的运动轨迹形状由什么决定是解好本题关键。
答案:A、B、D。
1、曲线运动:
⑴曲线运动定义:曲线运动是一种轨迹是曲线的运动,其速度方向随时间不断变化
⑵曲线运动中质点的瞬时速度方向:就是曲线的切线方向
⑶曲线运动是一种变速运动,因为物体速度方向不断变化,所以曲线运动的物体总有加速度
[注意]曲线运动一定是变速运动,一定具有加速度;但变速运动或具有加速度的运动不一定是曲线运动
⑷两种常见的曲线运动:平抛运动和匀速圆周运动
4.带电粒子在复合场中无约束情况下的运动性质
(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止状态.合外力恒定且与初速同向时做匀变速直线运动,常见的情况有:
①洛伦兹力为零(即v∥B),重力与电场力平衡,做匀速直线运动;或重力与电场力的合力恒定,做匀变速运动.
②洛伦兹力F与重力和电场力的合力平衡,做匀速直线运动.
(2)带电粒子所受合外力做向心力,带电粒子做匀速圆周运动时.由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力是以上力的合力.
例题1:如图所示,光滑导轨与水平面成α角,导轨宽L。匀强磁场磁感应强度为B。金属杆长也为L ,质量为m,水平放在导轨上。当回路总电流为I1时,金属杆正好能静止。求:⑴B至少多大?这时B的方向如何?⑵若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B也最小。根据左手定则,这时B应垂直于导轨平面向上,大小满足:BI1L=mgsinα, B=mgsinα/I1L。
当B的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI2Lcosα=mgsinα,I2=I1/cosα。(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
例题2:如图所示,质量为m的铜棒搭在U形导线框右端,棒长和框宽均为L,磁感应强度为B的匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后落在水平面上,水平位移为s。求闭合电键后通过铜棒的电荷量Q。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量FΔt=mv0而被平抛出去,其中F=BIL,而瞬时电流和时间的乘积等于电荷量Q=IΔt,由平抛规律可算铜棒离开导线框时的初速度,最终可得。
例题3:磁流体发电机原理图如右。等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。该发电机哪个极板为正极?两板间最大电压为多少?
解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间会产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv。当外电路断开时,这也就是电动势E。当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。这时电动势仍是E=Bdv,但路端电压将小于Bdv。
在定性分析时特别需要注意的是:
⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv,但电动势不变(和所有电源一样,电动势是电源本身的性质。)
⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。在外电路断开时最终将达到平衡态。
例题4:半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p型和n型两种。p型半导体中空穴为多数载流子;n型半导体中自由电子为多数载流子。用以下实验可以判定一块半导体材料是p型还是n型:将材料放在匀强磁场中,通以图示方向的电流I,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p型半导体;若下极板电势高,就是n型半导体。试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。p型半导体中空穴多,上极板的电势高;n型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
例题5:如图直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?
解:正负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点相距2r,由图还看出经历时间相差2T/3。答案为射出点相距,时间差为。关键是找圆心、找半径和用对称。
例题6:一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。
解:由射入、射出点的半径可找到圆心O/,并得出半径为;射出点坐标为(0,)。
例题7: 某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带___电;第二次射出时的速度为_____。
解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。
例题8:如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L偏转角度均为α,求E∶B
解:分别利用带电粒子的偏角公式。在电场中偏转:
,在磁场中偏转:,由以上两式可得。可以证明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。
例题9:一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径为r,电场强度为E磁感应强度为B,则线速度为_____。
解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由
例题10:质量为m带电量为q的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。匀强电场和匀强磁场的方向如图所示,电场强度为E,磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大, 求运动过程中小球的最大加速度和最大速度。
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。随着v的增大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最大。
若将磁场的方向反向,而其他因素都不变,则开始运动后洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为;摩擦力等于重力时速度最大,为。
(3)当带电粒子受的合力大小、方向均不断变化时,粒子做非匀变速曲线运动
3.带电粒子在有界磁场中运动的极值问题
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.
(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.
2.在研究带电粒子在匀强磁场中做匀速圆周运动时,关键把握“一找圆心,二找半径,三找周期或时间t″的规律.
(1)圆心的确定:因洛伦兹力F指向圆心,根据F⊥v,画出粒子轨迹中的任意两点(一般是射入和射出磁场的两点)的F的方向,沿两个洛伦兹力F画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,找出圆心位置.
(2)半径的确定和计算
利用平面几何关系或半径公式,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:
①粒子速度的偏向角φ甲等于圆心角α,并等于AB弦与切线的夹角θ(弦切角)的2倍,如图所示,即.
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ +θ′=180°.
(3)粒子在磁场中运动时间t的确定:利用圆心角口与弦切角日的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,由公式可求出粒子在磁场中运动的时间t.
(4)注意圆周运动中的有关对称规律
如从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.
1.洛伦兹力与安培力的关系
(1)洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.
(2)洛伦兹力永不做功,但安培力却可以做功.
16、回旋加速器
(1)基本用途
回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用,在较小的范围内来获得高能粒子的装置。
(2)工作原理
放在A0处的粒子源发出一个带正电的粒子,它以某一速率v0垂直进入匀强磁场,在磁场中做匀速圆周运动,经过半个周期,当它沿着半圆弧A0A1到达A1时,在A1A1′处造成一个向上的电场,使这个带电粒子在A1A1′处受到一次电场的加速,速率由v0增加到v1,然后粒子以速率v1在磁场中做匀速圆周运动。我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着半径增大了的圆周运动,又经过半个周期,当它沿着半圆弧A1′A2′到达A2′时,在A2′A2处造成一个向下的电场,使粒子又一次受到电场的加速,速率增加到v2,如此继续下去,每当粒子运动到A1A′、A3A3'等处时都使它受到向上电场的加速,每当粒子运动到A2′A2、A4′A4等处时都使它受到向下电场的加速,粒子将沿着图示的螺线A0A1 A1′A2′A2……回旋下去,速率将一步一步地增大。
带电粒子在匀强磁场中做匀速圆周运动的周期T=,跟运动速率和轨道半径无关,对一定的带电粒子和一定的磁场来说,这个周期是恒定的。因此,尽管粒子的速率和半径一次比一次增大,运动周期T却始终不变,这样,如果在直线AA、A′A′处造成一个交变电场,使它以相同的周期T往复变化,那就可以保证粒子每经过直线AA和A′A′时都正好赶上适合的电场方向而被加速。
①磁场的作用
带电粒子以某一速度垂直磁场方向进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期和速率与半径无关,使带电粒子每次进入D形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速。
②电场的作用
回旋加速器的两个D形盒之间的窄缝区域存在周期性变化的并垂直于两D形盒直径的匀强电场,加速就是在这个区域完成的。
③交变电压
为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个与T=相同的交变电压。
(3)回旋加速器的核心
回旋加速器的核心部分是两个D形的金属扁盒,这两个D形盒就像是沿着直径把一个圆形的金属扁盒切成的两半。两个D形盒之间留一个窄缝,在中心附近放有粒子源。D形盒装在真空容器中,整个装置放在巨大电磁铁的两极之间,磁场方向垂直于D形盒的底面。把两个D形盒分别接在高频电源的两极上,如果高频电源的周期与带电粒子在D形盒中的运动周期相同,带电粒子就可以不断地被加速了。带电粒子在D形盒内沿螺线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出。
D形金属扁盒的主要作用是起到静电屏蔽作用,使得盒内空间的电场极弱,这样就可以使运动的粒子只受洛伦兹力的作用做匀速圆周运动。
在加速区域中也有磁场,但由于加速区间距离很小,磁场对带电粒子的加速过程的影响很小,因此,可以忽略磁场的影响。
设D形盒的半径为R,由qvB=m得,粒子可能获得的最大动能
Ekm=mvm2=
可见:带电粒子获得的最大能量与D形盒半径有关,由于受D形盒半径R的限制,带电粒子在这种加速器中获得的能量也是有限的。为了获得更大的能量,人类又发明各种类型的新型加速器。
(4)回旋加速器的优点与缺点
使人类在获得具有较高能量的粒子方面前进了一步。
用这种经典的回旋加速器加速,要想进一步提高质子的能量就很困难了。按照狭义相对论(以后会介绍),这时粒子的质量将随着速率的增加而显著地增大,粒子在磁场中回旋一周所需的时间要发生变化。交变电场的频率不再跟粒子运动的频率一致,这就破坏了加速器的工作条件,进一步提高粒子的速率就不可能了。
例题:个长度逐渐增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图所示(图中画出五、六个圆筒,作为示意图)。各筒和靶相间地连接到频率为ν,最大电压值为U的正弦交流电源的两端。整个装置放在高真空容器中,圆筒的两底面中心开有小孔。现有一电荷量为q,质量为m的正离子沿轴线射入圆筒,并将在圆筒间及靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场),缝隙的宽度很小,离子穿缝隙的时间可以不计,已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差为U1-U2=-U。为使打在靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶子上的离子的能量,
解析:粒子在筒内做匀速直线运动,在缝隙处被加速,因此要求粒子穿过每个圆筒的时间均为(即),N个圆筒至打在靶上被加速N次,每次电场力做的功均为qU。
只有当离子在各圆筒内穿过的时间都为t==时,离子才有可能每次通过筒间缝隙都被加速,这样第一个圆筒的长度L1=v1t=,当离子通过第一、二个圆筒间的缝隙时,两筒间电压为U,离子进入第二个圆筒时的动能就增加了qU,所以:
E2=mv22=mv12+qU
v2=
第二个圆筒的长度L2=v2t=×
如此可知离子进入第三个圆筒时的动能
E3=E2=mv32=mv22+qU=mv12+2qU
速度v3=
第三个圆筒长度L3=×
离子进入第n个圆筒时的动能
EN=mvN2=mv12+(N-1)qU
速度vN=
第N个圆筒的长度LN=×
此时打到靶上离子的动能
Ek=EN+qU=mv12+NqU
例题:知回旋加速器中D形盒内匀强磁场的磁感应强度B=1.5T,D形盒的半径为R=60 cm,两盒间电压U=2×104 V,今将α粒子从间隙中心某处向D形盒内近似等于零的初速度,垂直于半径的方向射入,求粒子在加速器内运行的时间的最大可能值。
解析:带电粒子在做圆周运动时,其周期与速度和半径无关,每一周期被加速两次,每次加速获得能量为qU,根据D形盒的半径得到粒子获得的最大能量,即可求出加速次数,可知经历了几个周期,从而求总出总时间。
粒子在D形盒中运动的最大半径为R
则R=
vm=
则其最大动能为Ekm=mvm2=
粒子被加速的次数为n==
则粒子在加速器内运行的总时间为
t=n·=×=4.3×10-5s
15、使带电粒子加速的方法
利用加速电场给带电粒子加速。
由动能定理W=ΔEk
qU=mv2
v=
为了提高粒子的能量,可以设想让粒子经过多次电场来加速
带电粒子增加的动能ΔE=mv2-mv02=q(U1+U2+U3+……+Un)
14、质谱议
(1)质谱仪的结构
质谱仪由静电加速电极、速度选择器、偏转磁场、显示屏等组成。
(2)质谱仪的工作原理
mv2=qU
v=
r==
r和进入磁场的速度无关,进入同一磁场时,r∝,而且这些个量中,U、B、r可以直接测量,那么,我们可以用装置来测量比荷。如果再已知带电粒子的电荷量q,就可算出它的质量。
质子数相同而质量数不同的原子互称为同位素。在上图中,如果容器A中含有电荷量相同而质量有微小差别的粒子,根据例题中的结果可知,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线。每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可算出它的质量。这种仪器叫做质谱议。例题2中的图就是质谱仪的原理示意图。
例题:质子和一价钠离子分别垂直进入同一匀强磁场中做匀速圆周运动,如果它们的圆运动半径恰好相等,这说明它们在刚进入磁场时( B )
A.速率相等 B.动量大小相等
C.动能相等 D.质量相等
问题讨论:带电粒子在磁场和电场中受力有什么区别呢?
①电场对静止或运动的带电粒子都有电场力的作用,磁场只对运动的带电粒子有磁场力(洛伦兹力)的作用(条件是v与B不平行)。
②电场力跟电场强度E的方向相同(正电荷)或相反(负电荷),洛伦兹力跟磁感应强度B的方向垂直。
③电场力不受粒子运动速度的影响,洛伦兹力则与粒子运动速度有关。
13、带电粒子在磁场中的偏转
质量为m,电荷量为q的粒子,以初速度v0垂直进入磁感应强度为B、宽度为L的匀强磁场区域,如图所示。
(1)带电粒子的运动轨迹及运动性质
作匀速圆周运动;轨迹为圆周的一部分。
(2)带电粒子运动的轨道半径
R==
(3)带电粒子离开磁场电的速率
v=v0
(4)带电粒子离开磁场时的偏转角θ
sinθ==
(5)带电粒子在磁场中的运动时间t
t== (θ弧度为单位)
(6)带电粒子离开磁场时偏转的侧位移
y=R-=R(1-cosθ)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com