5.在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为
A. B.
C. D.
4.名工人某天生产同一零件,生产的件数是设其平均数为,中位数为,众数为,则有
A. B. C. D.
3.如果复数的实部和虚部相等,则实数等于
A. B. C. D.
2.下列函数中,在区间上为增函数且以为周期的函数是
A. B. C. D.
1.已知全集,集合,,则
A. B. C. D.
22.(本小题满分15分)
如图,F是椭圆(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且,求直线l2的方程.
21.(本小题满分15分)
已知二次函数的图像经过坐标原点,其导函数f'(x)=2x+2,数列的前n项和为,点(n,Sn)(n∈N*)均在函数的图像上.
(Ⅰ)求数列的通项公式;
(Ⅱ)设bn=,Tn是数列{bn}的前n项和,求.
20.(本小题满分14分)
已知函数 (a∈R)
(Ⅰ)若函数f(x)的图象在x=2处的切线方程为,求a,b的值;
(Ⅱ)若函数f(x)在(1,+∞)为增函数,求a的取值范围.
19.(本小题满分14分)
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,
M为AP的中点.
(Ⅰ)求证:DM∥平面PCB;
(Ⅱ)求直线AD与PB所成角;
(Ⅲ)求三棱锥P-MBD的体积.
18.(本小题满分14分)
一袋中有m(m∈N*)个红球,3个黑球和2个自球,现从中任取2个球.
(Ⅰ)当m=4时,求取出的2个球颜色相同的概率;
(Ⅱ)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;
(Ⅲ)如果取出的2个球颜色不相同的概率小于,求m的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com