0  404268  404276  404282  404286  404292  404294  404298  404304  404306  404312  404318  404322  404324  404328  404334  404336  404342  404346  404348  404352  404354  404358  404360  404362  404363  404364  404366  404367  404368  404370  404372  404376  404378  404382  404384  404388  404394  404396  404402  404406  404408  404412  404418  404424  404426  404432  404436  404438  404444  404448  404454  404462  447090 

4.  某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成。现从中随机

选出两位作为成果发布人,则此两人不属于同一个国家的概率为        

(结果用分数表示)

试题详情

3.  在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判曰原来的9名增至14名,但只任取其中7名裁判的评分作为有效分,若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是    .(结果用数值表示)

试题详情

2.  在5张卡片上分别写着数字1、2、3、4、5,然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是(   )

(A) 0.8      (B) 0.6      (C) 0.4      (D) 0.2

试题详情

1.    将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩

具)先后抛掷3次,至少出现一次6点向上的概率是 (   )  

(A)    (B)     (C)     (D)

试题详情

6.解: =0.752

第三课时

例题

例1  从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求:

(Ⅰ)选出的3位同学中,至少有一位男同学的概率;

(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.

 (2004年全国卷Ⅰ)

例2  已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:

(Ⅰ)A、B两组中有一组恰有两支弱队的概率;

(Ⅱ)A组中至少有两支弱队的概率.   (2004年全国卷Ⅱ)

例3  某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.

(Ⅰ)求这名同学得300分的概率;

(Ⅱ)求这名同学至少得300分的概率.  (2004年全国卷Ⅲ)

例4  从4名男生和2名女生中任选3人参加演讲比赛.

(Ⅰ)求所选3人都是男生的概率;

(Ⅱ)求所选3人中恰有1名女生的概率;

(Ⅲ)求所选3人中至少有1名女生的概率.  (2004年天津卷)

备用  A、B、C、D、E五人分四本不同的书,每人至多分一本,求:

(1)A不分甲书,B不分乙书的概率;

(2)甲书不分给A、B,乙书不分给C的概率.

解: (1)分别记“分不到书的是A,B不分乙书”,“分不到书的是B,A不分甲书”,“分不到书的是除A,B以外的其余的三人中的一人,同时A不分甲书,B不分乙书”为事件A1,B1,C1,它们的概率是

.

因为事件A1,B1,C1彼此互斥,由互斥事件的概率加法公式,A不分甲书,B不分乙书的概率是:

(2) 在乙书不分给C的情况下,分别记“甲书分给C”,“甲书分给D”,“甲书分给E”为事件A2,B2,C2彼此互斥,有互斥事件的概率加法公式,甲书不分给A,B,乙书不分给C的概率为:

 

作业

试题详情

1. D   2. A  3.  4.   5.解:有两种可能:将原1件次品仍鉴定为次品,原3件正品中1件错误地鉴定为次品;将原1件次品错误地鉴定为正品,原3件正品中的2件错误地鉴定为次品.  概率为

P==0.1998

试题详情

1. (Ⅰ) ; (Ⅱ).   2. 0.648; 0.792.   3. (Ⅰ) ; (Ⅱ) 5人.   4. (Ⅰ) 0.176 ; (Ⅱ) 0.012 .

作业答案

试题详情

6. 如图,用表示四类不同的元件连接成系统.当元件至少有一个正常工作且元件至少有一个正常工作时,系统

正常工作.已知元件正常工作的概率

依次为0.5,0.6,0.7,0.8,求元件连接成的系

正常工作的概率.

例题答案

试题详情

5. 某产品检验员检查每一件产品时,将正品错误地鉴定为次品的概率为0.1,将次口错误地鉴定为正品的概率为0.2,如果这位检验员要鉴定4件产品,这4件产品中3件是正品,1件是次品,试求检验员鉴定成正品,次品各2件的概率.

试题详情

4. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女

生当选的概率是           (用分数作答)

试题详情


同步练习册答案