17.(本题满分12分)
已知正四棱柱底面边长是1,体积是2,分别是棱的中点,求异面直线与所成角的大小.(结果用反三角函数值表示)
16.已知图1中的图像对应的函数为,则图2中的图像对应的函数在下列给出的四式中,只可能是 ( )
A. B. C. D.
15.已知数列的前项和是实数),下列结论正确的是 ( )
A.为任意实数,均是等比数列 B.当且仅当时,是等比数列
C.当且仅当时,是等比数列 D.当且仅当时,是等比数列
14.已知直线与抛物线相交于两个不同的点,那么“直线经过抛物线的焦点”是“”的 ( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
13.复数是虚数单位),在复平面内的对应点只可能位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12.如图,在平面斜坐标系中中,,平面上任一点的斜坐标定义如下:若,其中分别为与轴,轴同方向的单位向量,则点的斜坐标为.
那么,以为圆心,为半径的圆有斜坐标系中的方程是__________.
11.如果执行下面的程序框图,那么输出的=_________ .
10.若一个球的体积为,则它的表面积为___________.
9.在的二项展开式中,的系数是___________.
8.若方程的系数可以从这个数中任取个不同的数而得到,则这样的方程表示焦点在轴上的椭圆的概率是___________.(结果用数值表示)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com